3 resultados para Monteuuis, abbé
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The digital electronic market development is founded on the continuous reduction of the transistors size, to reduce area, power, cost and increase the computational performance of integrated circuits. This trend, known as technology scaling, is approaching the nanometer size. The lithographic process in the manufacturing stage is increasing its uncertainty with the scaling down of the transistors size, resulting in a larger parameter variation in future technology generations. Furthermore, the exponential relationship between the leakage current and the threshold voltage, is limiting the threshold and supply voltages scaling, increasing the power density and creating local thermal issues, such as hot spots, thermal runaway and thermal cycles. In addiction, the introduction of new materials and the smaller devices dimension are reducing transistors robustness, that combined with high temperature and frequently thermal cycles, are speeding up wear out processes. Those effects are no longer addressable only at the process level. Consequently the deep sub-micron devices will require solutions which will imply several design levels, as system and logic, and new approaches called Design For Manufacturability (DFM) and Design For Reliability. The purpose of the above approaches is to bring in the early design stages the awareness of the device reliability and manufacturability, in order to introduce logic and system able to cope with the yield and reliability loss. The ITRS roadmap suggests the following research steps to integrate the design for manufacturability and reliability in the standard CAD automated design flow: i) The implementation of new analysis algorithms able to predict the system thermal behavior with the impact to the power and speed performances. ii) High level wear out models able to predict the mean time to failure of the system (MTTF). iii) Statistical performance analysis able to predict the impact of the process variation, both random and systematic. The new analysis tools have to be developed beside new logic and system strategies to cope with the future challenges, as for instance: i) Thermal management strategy that increase the reliability and life time of the devices acting to some tunable parameter,such as supply voltage or body bias. ii) Error detection logic able to interact with compensation techniques as Adaptive Supply Voltage ASV, Adaptive Body Bias ABB and error recovering, in order to increase yield and reliability. iii) architectures that are fundamentally resistant to variability, including locally asynchronous designs, redundancy, and error correcting signal encodings (ECC). The literature already features works addressing the prediction of the MTTF, papers focusing on thermal management in the general purpose chip, and publications on statistical performance analysis. In my Phd research activity, I investigated the need for thermal management in future embedded low-power Network On Chip (NoC) devices.I developed a thermal analysis library, that has been integrated in a NoC cycle accurate simulator and in a FPGA based NoC simulator. The results have shown that an accurate layout distribution can avoid the onset of hot-spot in a NoC chip. Furthermore the application of thermal management can reduce temperature and number of thermal cycles, increasing the systemreliability. Therefore the thesis advocates the need to integrate a thermal analysis in the first design stages for embedded NoC design. Later on, I focused my research in the development of statistical process variation analysis tool that is able to address both random and systematic variations. The tool was used to analyze the impact of self-timed asynchronous logic stages in an embedded microprocessor. As results we confirmed the capability of self-timed logic to increase the manufacturability and reliability. Furthermore we used the tool to investigate the suitability of low-swing techniques in the NoC system communication under process variations. In this case We discovered the superior robustness to systematic process variation of low-swing links, which shows a good response to compensation technique as ASV and ABB. Hence low-swing is a good alternative to the standard CMOS communication for power, speed, reliability and manufacturability. In summary my work proves the advantage of integrating a statistical process variation analysis tool in the first stages of the design flow.
Resumo:
The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.
Resumo:
Self-incompatibility (SI) systems have evolved in many flowering plants to prevent self-fertilization and thus promote outbreeding. Pear and apple, as many of the species belonging to the Rosaceae, exhibit RNase-mediated gametophytic self-incompatibility, a widespread system carried also by the Solanaceae and Plantaginaceae. Pear orchards must for this reason contain at least two different cultivars that pollenize each other; to guarantee an efficient cross-pollination, they should have overlapping flowering periods and must be genetically compatible. This compatibility is determined by the S-locus, containing at least two genes encoding for a female (pistil) and a male (pollen) determinant. The female determinant in the Rosaceae, Solanaceae and Plantaginaceae system is a stylar glycoprotein with ribonuclease activity (S-RNase), that acts as a specific cytotoxin in incompatible pollen tubes degrading cellular RNAs. Since its identification, the S-RNase gene has been intensively studied and the sequences of a large number of alleles are available in online databases. On the contrary, the male determinant has been only recently identified as a pollen-expressed protein containing a F-box motif, called S-Locus F-box (abbreviated SLF or SFB). Since F-box proteins are best known for their participation to the SCF (Skp1 - Cullin - F-box) E3 ubiquitine ligase enzymatic complex, that is involved in protein degradation through the 26S proteasome pathway, the male determinant is supposed to act mediating the ubiquitination of the S-RNases, targeting them for the degradation in compatible pollen tubes. Attempts to clone SLF/SFB genes in the Pyrinae produced no results until very recently; in apple, the use of genomic libraries allowed the detection of two F-box genes linked to each S haplotype, called SFBB (S-locus F-Box Brothers). In Japanese pear, three SFBB genes linked to each haplotype were cloned from pollen cDNA. The SFBB genes exhibit S haplotype-specific sequence divergence and pollen-specific expression; their multiplicity is a feature whose interpretation is unclear: it has been hypothesized that all of them participate in the S-specific interaction with the RNase, but it is also possible that only one of them is involved in this function. Moreover, even if the S locus male and female determinants are the only responsible for the specificity of the pollen-pistil recognition, many other factors are supposed to play a role in GSI; these are not linked to the S locus and act in a S-haplotype independent manner. They can have a function in regulating the expression of S determinants (group 1 factors), modulating their activity (group 2) or acting downstream, in the accomplishment of the reaction of acceptance or rejection of the pollen tube (group 3). This study was aimed to the elucidation of the molecular mechanism of GSI in European pear (Pyrus communis) as well as in the other Pyrinae; it was divided in two parts, the first focusing on the characterization of male determinants, and the second on factors external to the S locus. The research of S locus F-box genes was primarily aimed to the identification of such genes in European pear, for which sequence data are still not available; moreover, it allowed also to investigate about the S locus structure in the Pyrinae. The analysis was carried out on a pool of varieties of the three species Pyrus communis (European pear), Pyrus pyrifolia (Japanese pear), and Malus × domestica (apple); varieties carrying S haplotypes whose RNases are highly similar were chosen, in order to check whether or not the same level of similarity is maintained also between the male determinants. A total of 82 sequences was obtained, 47 of which represent the first S-locus F-box genes sequenced from European pear. The sequence data strongly support the hypothesis that the S locus structure is conserved among the three species, and presumably among all the Pyrinae; at least five genes have homologs in the analysed S haplotypes, but the number of F-box genes surrounding the S-RNase could be even greater. The high level of sequence divergence and the similarity between alleles linked to highly conserved RNases, suggest a shared ancestral polymorphism also for the F-box genes. The F-box genes identified in European pear were mapped on a segregating population of 91 individuals from the cross 'Abbé Fétel' × 'Max Red Bartlett'. All the genes were placed on the linkage group 17, where the S locus has been placed both in pear and apple maps, and resulted strongly associated to the S-RNase gene. The linkage with the RNase was perfect for some of the F-box genes, while for others very rare single recombination events were identified. The second part of this study was focused on the research of other genes involved in the SI response in pear; it was aimed on one side to the identification of genes differentially expressed in compatible and incompatible crosses, and on the other to the cloning and characterization of the transglutaminase (TGase) gene, whose role may be crucial in pollen rejection. For the identification of differentially expressed genes, controlled pollinations were carried out in four combinations (self pollination, incompatible, half-compatible and fully compatible cross-pollination); expression profiles were compared through cDNA-AFLP. 28 fragments displaying an expression pattern related to compatibility or incompatibility were identified, cloned and sequenced; the sequence analysis allowed to assign a putative annotation to a part of them. The identified genes are involved in very different cellular processes or in defense mechanisms, suggesting a very complex change in gene expression following the pollen/pistil recognition. The pool of genes identified with this technique offers a good basis for further study toward a better understanding of how the SI response is carried out. Among the factors involved in SI response, moreover, an important role may be played by transglutaminase (TGase), an enzyme involved both in post-translational protein modification and in protein cross-linking. The TGase activity detected in pear styles was significantly higher when pollinated in incompatible combinations than in compatible ones, suggesting a role of this enzyme in the abnormal cytoskeletal reorganization observed during pollen rejection reaction. The aim of this part of the work was thus to identify and clone the pear TGase gene; the PCR amplification of fragments of this gene was achieved using primers realized on the alignment between the Arabidopsis TGase gene sequence and several apple EST fragments; the full-length coding sequence of the pear TGase gene was then cloned from cDNA, and provided a precious tool for further study of the in vitro and in vivo action of this enzyme.