3 resultados para Modified truncation approach
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The development of a multibody model of a motorbike engine cranktrain is presented in this work, with an emphasis on flexible component model reduction. A modelling methodology based upon the adoption of non-ideal joints at interface locations, and the inclusion of component flexibility, is developed: both are necessary tasks if one wants to capture dynamic effects which arise in lightweight, high-speed applications. With regard to the first topic, both a ball bearing model and a journal bearing model are implemented, in order to properly capture the dynamic effects of the main connections in the system: angular contact ball bearings are modelled according to a five-DOF nonlinear scheme in order to grasp the crankshaft main bearings behaviour, while an impedance-based hydrodynamic bearing model is implemented providing an enhanced operation prediction at the conrod big end locations. Concerning the second matter, flexible models of the crankshaft and the connecting rod are produced. The well-established Craig-Bampton reduction technique is adopted as a general framework to obtain reduced model representations which are suitable for the subsequent multibody analyses. A particular component mode selection procedure is implemented, based on the concept of Effective Interface Mass, allowing an assessment of the accuracy of the reduced models prior to the nonlinear simulation phase. In addition, a procedure to alleviate the effects of modal truncation, based on the Modal Truncation Augmentation approach, is developed. In order to assess the performances of the proposed modal reduction schemes, numerical tests are performed onto the crankshaft and the conrod models in both frequency and modal domains. A multibody model of the cranktrain is eventually assembled and simulated using a commercial software. Numerical results are presented, demonstrating the effectiveness of the implemented flexible model reduction techniques. The advantages over the conventional frequency-based truncation approach are discussed.
Resumo:
This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.
Resumo:
The aim of this thesis is to explore the possible influence of the food matrix on food quality attributes. Using nuclear magnetic resonance techniques, the matrix-dependent properties of different foods were studied and some useful indices were defined to classify food products based on the matrix behaviour when responding to processing phenomena. Correlations were found between fish freshness indices, assessed by certain geometric parameters linked to the morphology of the animal, i.e. a macroscopic structure, and the degradation of the product structure. The same foodomics approach was also applied to explore the protective effect of modified atmospheres on the stability of fish fillets, which are typically susceptible to oxidation of the polyunsaturated fatty acids incorporated in the meat matrix. Here, freshness is assessed by evaluating the time-dependent change in the fish metabolome, providing an established freshness index, and its relationship to lipid oxidation. In vitro digestion studies, focusing on food products with different matrixes, alone and in combination with other meal components (e.g. seasoning), were conducted to investigate possible interactions between enzymes and food, modulated by matrix structure, which influence digestibility. The interaction between water and the gelatinous matrix of the food, consisting of a network of protein gels incorporating fat droplets, was also studied by means of nuclear magnetic relaxometry, in order to create a prediction tool for the correct classification of authentic and counterfeit food products protected by a quality label. This is one of the first applications of an NMR method focusing on the supramolecular structure of the matrix, rather than the chemical composition, to assess food authenticity. The effect of innovative processing technologies, such as PEF applied to fruit products, has been assessed by magnetic resonance imaging, exploiting information associated with the rehydration kinetics exerted by a modified food structure.