4 resultados para Modern track process
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
The Calabrian-Peloritani arc represents key site to unravel evolution of surface processes on top of subducting lithosphere. During the Pleistocene, in fact the arc uplifted at rate of the order of about 1mm/yr, forming high-standing low-relief upland (figure 2). Our study is focused on the relationship between tectonic and land evolution in the Sila Massif, Messina strait and Peloritani Mts. Landforms reflect a competition between tectonic, climatic, and surficial processes. Many landscape evolution models that explore feedbacks between these competing processes, given steady forcing, predict a state of erosional equilibrium, where the rates of river incision and hillslope erosion balance rock uplift. It has been suggested that this may be the final constructive stage of orogenic systems. Assumptions of steady erosion and incision are used in the interpretation of exhumation and uplift rates from different geologic data, and in the formulation of fluvial incision and hillslope evolution models. In the Sila massif we carried out cosmogenic isotopes analysis on 24 samples of modern fluvial sediments to constrain long-term (~103 yr) erosion rate averaged on the catchment area. 35 longitudinal rivers profiles have been analyzed to study the tectonic signal on the landscape evolution. The rivers analyzed exhibit a wide variety of profile forms, diverging from equilibrium state form. Generally the river profiles show at least 2 and often 3 distinct concave-up knickpoint-bounded segments, characterized by different value of concavity and steepness indices. River profiles suggest three main stages of incision. The values of ks and θ in the lower segments evidence a decrease in river incision, due probably to increasing uplift rate. The cosmogenic erosion rates pointed out that old landscape upland is eroding slowly at ~0.1 mm/yr. In the contrary, the flanks of the massif is eroding faster with value from 0.4 to 0.5 mm/yr due to river incision and hillslope processes. Cosmogenic erosion rates mach linearly with steepness indices and with average hillslope gradient. In the Messina area the long term erosion rate from low-T thermochronometry are of the same order than millennium scale cosmogenic erosion rate (1-2 mm/yr). In this part of the chain the fast erosion is active since several million years, probably controlled by extensional tectonic regime. In the Peloritani Mts apatite fission-track and (U-Th)/He thermochronometry are applied to constraint the thermal history of the basement rock. Apatite fission-track ages range between 29.0±5.5 and 5.5±0.9 Ma while apatite (U-Th)/He ages vary from 19.4 to 1.0 Ma. Most of the AFT ages are younger than the overlying terrigenous sequence that in turn postdates the main orogenic phase. Through the coupling of the thermal modelling with the stratigraphic record, a Middle Miocene thermal event due to tectonic burial is unravel. This event affected a inner-intermediate portion of the Peloritani belt confined by young AFT data (<15 Ma) distribution. We interpret this thermal event as due to an out-of–sequence thrusting occurring in the inner portion of the belt. Young (U-Th)/He ages (c. 5 Ma) record a final exhumation stage with increasing rates of denudation since the Pliocene times due to postorogenic extensional tectonics and regional uplift. In the final chapter we change the spatial scale to insert digital topography analysis and field data within a geodynamic model that can explain surface evidence produced by subduction process.
Resumo:
A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.
Resumo:
Coastal ecosystems represent an inestimable source of biodiversity, being among the most productive areas on the planet. Despite the great ecological and economic value of those environments, many threats endanger the species living in this ecosystem, like the rapid warming and the sea acidification, among many other. Benthic calcifying organisms (e.g. mollusks, corals and echinoderms) in particular, are among the most exposed to those hazards. These organisms use calcium carbonate as a structural and protective material through the biomineralization process, biologically controlled by the organism, but nevertheless, strongly influenced by the environmental surroundings. Evaluating how a changing environment can influence the process of biomineralization is critical to understand how those species of great ecological and economic importance will face the ongoing climate change. This thesis investigates the mechanism of biomineralization in different mollusks’ species of the Adriatic Sea, providing detailed descriptions of shells skeletal, biometric and growth parameters. Applying a multidisciplinary and multi-scale research approach, the influence of external environmental factors on the process of shell formation has been investigated. To achieve this purpose analysis were conducted both on current populations and on fossil remain, which allows to investigate ecological responses to past climate transitions. Mollusks’ shells in fact are one of the best tools to understand climate change in the past, present and future, since they record the environmental conditions prevailed during their life, reflected on the geochemical properties, microstructure and growth of the shell. This approach allowed to overcome the time scale limit imposed by field and laboratory survey, and better understand species long term adaptive response to changing environment, a crucial issue to define proper conservation and management strategies. Furthermore, the investigation of fossil record of mollusks assemblages offered the opportunity to evaluate the long-term biotic response to anthropogenic stressors in the north Adriatic Sea.