13 resultados para Model Correlation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galaxy clusters occupy a special position in the cosmic hierarchy as they are the largest bound structures in the Universe. There is now general agreement on a hierarchical picture for the formation of cosmic structures, in which galaxy clusters are supposed to form by accretion of matter and merging between smaller units. During merger events, shocks are driven by the gravity of the dark matter in the diffuse barionic component, which is heated up to the observed temperature. Radio and hard-X ray observations have discovered non-thermal components mixed with the thermal Intra Cluster Medium (ICM) and this is of great importance as it calls for a “revision” of the physics of the ICM. The bulk of present information comes from the radio observations which discovered an increasing number of Mpcsized emissions from the ICM, Radio Halos (at the cluster center) and Radio Relics (at the cluster periphery). These sources are due to synchrotron emission from ultra relativistic electrons diffusing through µG turbulent magnetic fields. Radio Halos are the most spectacular evidence of non-thermal components in the ICM and understanding the origin and evolution of these sources represents one of the most challenging goal of the theory of the ICM. Cluster mergers are the most energetic events in the Universe and a fraction of the energy dissipated during these mergers could be channelled into the amplification of the magnetic fields and into the acceleration of high energy particles via shocks and turbulence driven by these mergers. Present observations of Radio Halos (and possibly of hard X-rays) can be best interpreted in terms of the reacceleration scenario in which MHD turbulence injected during these cluster mergers re-accelerates high energy particles in the ICM. The physics involved in this scenario is very complex and model details are difficult to test, however this model clearly predicts some simple properties of Radio Halos (and resulting IC emission in the hard X-ray band) which are almost independent of the details of the adopted physics. In particular in the re-acceleration scenario MHD turbulence is injected and dissipated during cluster mergers and thus Radio Halos (and also the resulting hard X-ray IC emission) should be transient phenomena (with a typical lifetime <» 1 Gyr) associated with dynamically disturbed clusters. The physics of the re-acceleration scenario should produce an unavoidable cut-off in the spectrum of the re-accelerated electrons, which is due to the balance between turbulent acceleration and radiative losses. The energy at which this cut-off occurs, and thus the maximum frequency at which synchrotron radiation is produced, depends essentially on the efficiency of the acceleration mechanism so that observations at high frequencies are expected to catch only the most efficient phenomena while, in principle, low frequency radio surveys may found these phenomena much common in the Universe. These basic properties should leave an important imprint in the statistical properties of Radio Halos (and of non-thermal phenomena in general) which, however, have not been addressed yet by present modellings. The main focus of this PhD thesis is to calculate, for the first time, the expected statistics of Radio Halos in the context of the re-acceleration scenario. In particular, we shall address the following main questions: • Is it possible to model “self-consistently” the evolution of these sources together with that of the parent clusters? • How the occurrence of Radio Halos is expected to change with cluster mass and to evolve with redshift? How the efficiency to catch Radio Halos in galaxy clusters changes with the observing radio frequency? • How many Radio Halos are expected to form in the Universe? At which redshift is expected the bulk of these sources? • Is it possible to reproduce in the re-acceleration scenario the observed occurrence and number of Radio Halos in the Universe and the observed correlations between thermal and non-thermal properties of galaxy clusters? • Is it possible to constrain the magnetic field intensity and profile in galaxy clusters and the energetic of turbulence in the ICM from the comparison between model expectations and observations? Several astrophysical ingredients are necessary to model the evolution and statistical properties of Radio Halos in the context of re-acceleration model and to address the points given above. For these reason we deserve some space in this PhD thesis to review the important aspects of the physics of the ICM which are of interest to catch our goals. In Chapt. 1 we discuss the physics of galaxy clusters, and in particular, the clusters formation process; in Chapt. 2 we review the main observational properties of non-thermal components in the ICM; and in Chapt. 3 we focus on the physics of magnetic field and of particle acceleration in galaxy clusters. As a relevant application, the theory of Alfv´enic particle acceleration is applied in Chapt. 4 where we report the most important results from calculations we have done in the framework of the re-acceleration scenario. In this Chapter we show that a fraction of the energy of fluid turbulence driven in the ICM by the cluster mergers can be channelled into the injection of Alfv´en waves at small scales and that these waves can efficiently re-accelerate particles and trigger Radio Halos and hard X-ray emission. The main part of this PhD work, the calculation of the statistical properties of Radio Halos and non-thermal phenomena as expected in the context of the re-acceleration model and their comparison with observations, is presented in Chapts.5, 6, 7 and 8. In Chapt.5 we present a first approach to semi-analytical calculations of statistical properties of giant Radio Halos. The main goal of this Chapter is to model cluster formation, the injection of turbulence in the ICM and the resulting particle acceleration process. We adopt the semi–analytic extended Press & Schechter (PS) theory to follow the formation of a large synthetic population of galaxy clusters and assume that during a merger a fraction of the PdV work done by the infalling subclusters in passing through the most massive one is injected in the form of magnetosonic waves. Then the processes of stochastic acceleration of the relativistic electrons by these waves and the properties of the ensuing synchrotron (Radio Halos) and inverse Compton (IC, hard X-ray) emission of merging clusters are computed under the assumption of a constant rms average magnetic field strength in emitting volume. The main finding of these calculations is that giant Radio Halos are naturally expected only in the more massive clusters, and that the expected fraction of clusters with Radio Halos is consistent with the observed one. In Chapt. 6 we extend the previous calculations by including a scaling of the magnetic field strength with cluster mass. The inclusion of this scaling allows us to derive the expected correlations between the synchrotron radio power of Radio Halos and the X-ray properties (T, LX) and mass of the hosting clusters. For the first time, we show that these correlations, calculated in the context of the re-acceleration model, are consistent with the observed ones for typical µG strengths of the average B intensity in massive clusters. The calculations presented in this Chapter allow us to derive the evolution of the probability to form Radio Halos as a function of the cluster mass and redshift. The most relevant finding presented in this Chapter is that the luminosity functions of giant Radio Halos at 1.4 GHz are expected to peak around a radio power » 1024 W/Hz and to flatten (or cut-off) at lower radio powers because of the decrease of the electron re-acceleration efficiency in smaller galaxy clusters. In Chapt. 6 we also derive the expected number counts of Radio Halos and compare them with available observations: we claim that » 100 Radio Halos in the Universe can be observed at 1.4 GHz with deep surveys, while more than 1000 Radio Halos are expected to be discovered in the next future by LOFAR at 150 MHz. This is the first (and so far unique) model expectation for the number counts of Radio Halos at lower frequency and allows to design future radio surveys. Based on the results of Chapt. 6, in Chapt.7 we present a work in progress on a “revision” of the occurrence of Radio Halos. We combine past results from the NVSS radio survey (z » 0.05 − 0.2) with our ongoing GMRT Radio Halos Pointed Observations of 50 X-ray luminous galaxy clusters (at z » 0.2−0.4) and discuss the possibility to test our model expectations with the number counts of Radio Halos at z » 0.05 − 0.4. The most relevant limitation in the calculations presented in Chapt. 5 and 6 is the assumption of an “averaged” size of Radio Halos independently of their radio luminosity and of the mass of the parent clusters. This assumption cannot be released in the context of the PS formalism used to describe the formation process of clusters, while a more detailed analysis of the physics of cluster mergers and of the injection process of turbulence in the ICM would require an approach based on numerical (possible MHD) simulations of a very large volume of the Universe which is however well beyond the aim of this PhD thesis. On the other hand, in Chapt.8 we report our discovery of novel correlations between the size (RH) of Radio Halos and their radio power and between RH and the cluster mass within the Radio Halo region, MH. In particular this last “geometrical” MH − RH correlation allows us to “observationally” overcome the limitation of the “average” size of Radio Halos. Thus in this Chapter, by making use of this “geometrical” correlation and of a simplified form of the re-acceleration model based on the results of Chapt. 5 and 6 we are able to discuss expected correlations between the synchrotron power and the thermal cluster quantities relative to the radio emitting region. This is a new powerful tool of investigation and we show that all the observed correlations (PR − RH, PR − MH, PR − T, PR − LX, . . . ) now become well understood in the context of the re-acceleration model. In addition, we find that observationally the size of Radio Halos scales non-linearly with the virial radius of the parent cluster, and this immediately means that the fraction of the cluster volume which is radio emitting increases with cluster mass and thus that the non-thermal component in clusters is not self-similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the thesis we present the implementation of the quadratic maximum likelihood (QML) method, ideal to estimate the angular power spectrum of the cross-correlation between cosmic microwave background (CMB) and large scale structure (LSS) maps as well as their individual auto-spectra. Such a tool is an optimal method (unbiased and with minimum variance) in pixel space and goes beyond all the previous harmonic analysis present in the literature. We describe the implementation of the QML method in the {\it BolISW} code and demonstrate its accuracy on simulated maps throughout a Monte Carlo. We apply this optimal estimator to WMAP 7-year and NRAO VLA Sky Survey (NVSS) data and explore the robustness of the angular power spectrum estimates obtained by the QML method. Taking into account the shot noise and one of the systematics (declination correction) in NVSS, we can safely use most of the information contained in this survey. On the contrary we neglect the noise in temperature since WMAP is already cosmic variance dominated on the large scales. Because of a discrepancy in the galaxy auto spectrum between the estimates and the theoretical model, we use two different galaxy distributions: the first one with a constant bias $b$ and the second one with a redshift dependent bias $b(z)$. Finally, we make use of the angular power spectrum estimates obtained by the QML method to derive constraints on the dark energy critical density in a flat $\Lambda$CDM model by different likelihood prescriptions. When using just the cross-correlation between WMAP7 and NVSS maps with 1.8° resolution, we show that $\Omega_\Lambda$ is about the 70\% of the total energy density, disfavouring an Einstein-de Sitter Universe at more than 2 $\sigma$ CL (confidence level).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motivating problem concerns the estimation of the growth curve of solitary corals that follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the VBGF for corals is based on two parameters: the ultimate length L∞ and the growth rate k. One aim was to find a more reliable method for estimating these parameters, which can capture the influence of environmental covariates. The main issue with current methods is that they force the linearization of VBGF and neglect intra-individual variability. The idea was to use the hierarchical nonlinear model which has the appealing features of taking into account the influence of collection sites, possible intra-site measurement correlation and variance heterogeneity, and that can handle the influence of environmental factors and all the reliable information that might influence coral growth. This method was used on two databases of different solitary corals i.e. Balanophyllia europaea and Leptopsammia pruvoti, collected in six different sites in different environmental conditions, which introduced a decisive improvement in the results. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of the two parameters and the independence of the ultimate length L∞ from the influence of environmental covariates, so a further aim of the thesis was to propose a new parameterization based on the ultimate length and parameter c which explicitly describes the part of growth ascribable to site-specific conditions such as environmental factors. We explored the possibility of estimating these parameters characterizing the VBGF new parameterization via the nonlinear hierarchical model. Again there was a general improvement with respect to traditional methods. The results of the two parameterizations were similar, although a very slight improvement was observed in the new one. This is, nevertheless, more suitable from a theoretical point of view when considering environmental covariates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiologically during puberty and adolescence, when juvenile acne usually appears, the response to a glucose load is increased if compared to the one observed in adult and at pre-pubertal age, while insulin sensitivity is reduced. Insulin is a hormone that acts at different levels along the axis which controls the sex hormones. It increases the release of LH and FSH by pituitary gland, stimulates the synthesis of androgens in the gonads and stimulates the synthesis of androgenic precursors in adrenal glands. Finally, it acts in the liver by inhibiting the synthesis of Sex Hormone Binding Globulin (SHBG). Insulin is also able to act directly on the production of sebum and amplify the effects of Iinsulin Growth Factor-1 in the skin, inhibiting the synthesis of its binding protein (IGF Binding Protein-1). In female subjects with acne and Polycystic Ovary Syndrome (PCOS) insulin resistance is a well known pathogenetic factor, while the relationship between acne and insulin resistance has been poorly investigated in males so far. The purpose of this study is to investigate the correlation between insulin resistance and acne in young males who do not respond to common therapies. Clinical and biochemical parameters of glucose, lipid metabolism, androgens and IGF-1 were evaluated. Insulin resistance was estimated by Homeostasis Model assessment (HOMA-IR) and Oral Glucose Tolerance Test was also performed. We found that subjects with acne had higher Sistolic and Diastolic Blood Pressure, Waist/Hip Ratio, Waist Circumference, 120' OGTT serum insulin and serum IGF-1 and lower HDL-cholesterol than subjects of comparable age and gender without acne. The results thus obtained confirmed what other authors have recently reported about a metabolic imbalance in young males with acne. Furthermore, these results support the hypothesis that insulin resistance might play an important role in the pathogenesis of treatment-resistant acne in males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the latest statistics projections formulated by Eurostat, the proportion of elderly EU-27’s population aged over 65 years old is predicted to increase from 17.5 % in 2011 to 29.5 % by 2060. This "population explosion" makes extremely important to identify the different genetic and molecular mechanisms which underpin the morbidity and mortality along with new strategies able to counteract or slow down its progress. In this scenario fits the European Project MARK-AGE whose aim was to identify a robust set of biomarkers of human ageing able to discriminate between chronological and biological ageing and to derive a model for healthy ageing through the analysis of three populations from different European countries, supposed to be characterized by different ageing rate: 1. Subjects representing the “Normal” or “Physiological” aging. 2. Subjects representing the “successful” or “decelerate” aging 3. Subjects representing the “accelerated” aging. The aim of this work was to recruit and characterize volunteers, to perform an accurate analysis of the health status of elderly recruited subjects (60-79 years) verifying any possible dissimilarity in their aging trajectories, to identify a set of robust ageing biomarkers and investigate possible correlations between ageing biomarkers and health status of recruited volunteers. The model proposed by MARK-AGE Project regarding different ageing trajectories has been confirmed and several ageing biomarkers have been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic nicotine delivery systems (ENDS) use has recently grown. E-cig generates carcinogenic chemical compounds and reactive oxygen species (ROS). Carbonyls and ROS are formed when the liquid comes into contact with the heating element. In this study the chemical and biological effects of coil resistance applied on the same device were investigated. A preliminary in-vivo study the new heat-not-burn devices (IQOS®) has been conducted to evaluate the effect of the device on antioxidant biomarkers. The amount of formaldehyde, acetaldehyde, acrolein was measured by GC-MS analysis. The two e-liquids used for carbonyls detection differed only for the presence of nicotine. The nicotine-free liquid was then used for the detection of ROS in the aerosol. The impact of the non-nicotine vapor on cell viability in H1299 human lung carcinoma cells, as well as the biological effects in a rat model of e-cig aerosol exposure, were also evaluated. After the exposure of Sprague Dawley rats to e-cig and IQOS® aerosol, the effect of 28-day treatment was examined on enzymatic and non-enzymatic antioxidant response, lung inflammation, blood homeostasis and tissue damage by using scanning electron microscope (SEM) technique. The results show a significant correlation between the low resistance and the generation of higher concentrations of the selected carbonyls and ROS in aerosols. Cell viability was reduced with an inverse relation to coil resistance. The experimental model highlighted an impairment of the pulmonary antioxidant and detoxifying machinery. Frames from SEM show disorganization of alveolar and bronchial epithelium. IQOS® exposed animals shows a significant production of ROS related to the unbalance of antioxidant defense and alteration of macromolecule integrity. This research demonstrates how several toxicological aspects can potentially occur in e-cig consumers who use low resistance device coupled with nicotine-free liquid. ENDS may expose users to hazardous compounds, which, may promote chronic pathologies and degenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript reports the overall development of a Ph.D. research project during the “Mechanics and advanced engineering sciences” course at the Department of Industrial Engineering of the University of Bologna. The project is focused on the development of a combustion control system for an innovative Spark Ignited engine layout. In details, the controller is oriented to manage a prototypal engine equipped with a Port Water Injection system. The water injection technology allows an increment of combustion efficiency due to the knock mitigation effect that permits to keep the combustion phasing closer to the optimal position with respect to the traditional layout. At the beginning of the project, the effects and the possible benefits achievable by water injection have been investigated by a focused experimental campaign. Then the data obtained by combustion analysis have been processed to design a control-oriented combustion model. The model identifies the correlation between Spark Advance, combustion phasing and injected water mass, and two different strategies are presented, both based on an analytic and semi-empirical approach and therefore compatible with a real-time application. The model has been implemented in a combustion controller that manages water injection to reach the best achievable combustion efficiency while keeping knock levels under a pre-established threshold. Three different versions of the algorithm are described in detail. This controller has been designed and pre-calibrated in a software-in-the-loop environment and later an experimental validation has been performed with a rapid control prototyping approach to highlight the performance of the system on real set-up. To further make the strategy implementable on an onboard application, an estimation algorithm of combustion phasing, necessary for the controller, has been developed during the last phase of the PhD Course, based on accelerometric signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MYCN amplification is a genetic hallmark of the childhood tumour neuroblastoma. MYCN-MAX dimers activate the expression of genes promoting cell proliferation. Moreover, MYCN seems to transcriptionally repress cell differentiation even in absence of MAX. We adopted the Drosophila eye as model to investigate the effect of high MYC to MAX expression ratio on cells. We found that dMyc overexpression in eye cell precursors inhibits cell differentiation and induces the ectopic expression of Antennapedia (the wing Hox gene). The further increase of MYC/MAX ratio results in an eye-to-wing homeotic transformation. Notably, dMyc overexpression phenotype is suppressed by low levels of transcriptional co-repressors and MYCN associates to the promoter of Deformed (the eye Hox gene) in proximity to repressive sites. Hence, we envisage that, in presence of high MYC/MAX ratio, the “free MYC” might inhibit Deformed expression, leading in turn to the ectopic expression of Antennapedia. This suggests that MYCN might reinforce its oncogenic role by affecting the physiological homeotic program. Furthermore, poor neuroblastoma outcome associates with a high level of the MRP1 protein, encoded by the ABCC1 gene and known to promote drug efflux in cancer cells. Intriguingly, this correlation persists regardless of chemotherapy and ABCC1 overexpression enhances neuroblastoma cell motility. We found that Drosophila dMRP contributes to the adhesion between the dorsal and ventral epithelia of the wing by inhibiting the function of integrin receptors, well known regulators of cell adhesion and migration. Besides, integrins play a crucial role during synaptogenesis and ABCC1 locus is included in a copy number variable region of the human genome (16p13.11) involved in neuropsychiatric diseases. Interestingly, we found that the altered dMRP/MRP1 level affects nervous system development in Drosophila embryos. These preliminary findings point out novel ABCC1 functions possibly defining ABCC1 contribution to neuroblastoma and to the pathogenicity of 16p13.11 deletion/duplication

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Down syndrome (DS) or trisomy 21 (T21) is the most common genetic cause of intellectual disability (ID). Subjects with DS are characterized by complex and variable clinical features including intellectual disability (ID) and craniofacial dysmorphisms. The aim of the thesis is to uncover genotype-phenotype relationships in DS possibly useful to devise therapies based on molecular and cellular mechanisms. In this work, we have investigated different aspects of DS: - we have collected clinical data of children with DS and we have evaluated the cognitive impairment through specific cognitive tests - we have analysed genomics of DS through the study of partial trisomy (PT21) cases. We have described new PT21 cases confirming the hypothesis of the highly restricted DS critical region (HR-DSCR) recently identified as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS, while it is absent in all PT21 non-DS subjects. Moreover, we have characterized new transcripts included in the HR-DSCR; - we have studied gene expression through RNAseq in blood cells of children with DS; -metabolic alterations in plasma of children with DS were identified through different methods: Nuclear Magnetic resonance, routine blood exams performed during the follow up of the subjects and enzyme-linked immunosorbent assay (ELISA); - to test possible correlations between specific Hsa21 regions and alterations in transcriptomics and metabolomics, we have used trisomic iPSCs and differentiated them into neuronal derivatives. Significant alterations in gene expression and metabolic profiles have been identified, as well as significant correlations with clinical and cognitive aspects. Specific genes and the HR-DSCR may play a role in these alterations: cell models need to be developed to investigate this role. Neural derivatives from trisomic iPSCs are a promising model to better understand genotype-phenotype correlations in DS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).