8 resultados para Mobility and accessibility
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Agriculture land tenure systems and their influence on land mobility and investment in rural Albania
Resumo:
In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.
Resumo:
This doctoral work gains deeper insight into the dynamics of knowledge flows within and across clusters, unfolding their features, directions and strategic implications. Alliances, networks and personnel mobility are acknowledged as the three main channels of inter-firm knowledge flows, thus offering three heterogeneous measures to analyze the phenomenon. The interplay between the three channels and the richness of available research methods, has allowed for the elaboration of three different papers and perspectives. The common empirical setting is the IT cluster in Bangalore, for its distinguished features as a high-tech cluster and for its steady yearly two-digit growth around the service-based business model. The first paper deploys both a firm-level and a tie-level analysis, exploring the cases of 4 domestic companies and of 2 MNCs active the cluster, according to a cluster-based perspective. The distinction between business-domain knowledge and technical knowledge emerges from the qualitative evidence, further confirmed by quantitative analyses at tie-level. At firm-level, the specialization degree seems to be influencing the kind of knowledge shared, while at tie-level both the frequency of interaction and the governance mode prove to determine differences in the distribution of knowledge flows. The second paper zooms out and considers the inter-firm networks; particularly focusing on the role of cluster boundary, internal and external networks are analyzed, in their size, long-term orientation and exploration degree. The research method is purely qualitative and allows for the observation of the evolving strategic role of internal network: from exploitation-based to exploration-based. Moreover, a causal pattern is emphasized, linking the evolution and features of the external network to the evolution and features of internal network. The final paper addresses the softer and more micro-level side of knowledge flows: personnel mobility. A social capital perspective is here developed, which considers both employees’ acquisition and employees’ loss as building inter-firm ties, thus enhancing company’s overall social capital. Negative binomial regression analyses at dyad-level test the significant impact of cluster affiliation (cluster firms vs non-cluster firms), industry affiliation (IT firms vs non-IT fims) and foreign affiliation (MNCs vs domestic firms) in shaping the uneven distribution of personnel mobility, and thus of knowledge flows, among companies.
Resumo:
The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.
Resumo:
The aim of this thesis was to study the effects of extremely low frequency (ELF) electromagnetic magnetic fields on potassium currents in neural cell lines ( Neuroblastoma SK-N-BE ), using the whole-cell Patch Clamp technique. Such technique is a sophisticated tool capable to investigate the electrophysiological activity at a single cell, and even at single channel level. The total potassium ion currents through the cell membrane was measured while exposing the cells to a combination of static (DC) and alternate (AC) magnetic fields according to the prediction of the so-called â Ion Resonance Hypothesis â. For this purpose we have designed and fabricated a magnetic field exposure system reaching a good compromise between magnetic field homogeneity and accessibility to the biological sample under the microscope. The magnetic field exposure system consists of three large orthogonal pairs of square coils surrounding the patch clamp set up and connected to the signal generation unit, able to generate different combinations of static and/or alternate magnetic fields. Such system was characterized in term of field distribution and uniformity through computation and direct field measurements. No statistically significant changes in the potassium ion currents through cell membrane were reveled when the cells were exposed to AC/DC magnetic field combination according to the afore mentioned âIon Resonance Hypothesisâ.
Resumo:
Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.
Resumo:
Aging is a complex phenomenon that affects organs and tissues at a different rate. With advancing age, the skeletal muscle undergoes a progressive loss of mass and strength, a process known as sarcopenia that leads to a decreased mobility and increased risk of falls and invalidity. On the other side, another organ such as the liver that is endowed with a peculiar regenerative capacity seems to be only marginally affected by aging. Accordingly, clinical data indicate that liver transplantation from aged subjects has, in specific conditions, function and duration comparable to those achievable with grafts of liver from young donors. The molecular mechanisms involved in these peculiar aging patterns are still largely unknown, but it is conceivable that protein degradation machineries might play an important role, as they are responsible for the maintenance of cellular homeostasis. Indeed, it has been suggested that alteration of proteostasis may contribute to the onset and progression of several age-related pathological conditions, including skeletal muscle wasting and sarcopenia, as well as to the aging phenotypes. The ubiquitin-proteasome system (UPS) is one of the most important cellular pathways for intracellular degradation of short-lived as well as damaged proteins. To date, studies on the age-related modifications of proteasomes in liver and skeletal muscle were performed prevalently in rodents, with controversial results, while only preliminary observations have been obtained in human liver and skeletal muscle. In this scenario, we want to investigate and characterize in humans the age-related modifications of proteasomes of these two different organs.
Resumo:
This dissertation explores how diseases contributed to shape historical institutions and how health and diseases are still affecting modern comparative development. The overarching goal of this investigation is to identify the channels linking geographic suitability to diseases and the emergence of historical and modern insitutions, while tackling the endogenenity problems that traditionally undermine this literature. I attempt to do so by taking advantage of the vast amount of newly available historical data and of the richness of data accessible through the geographic information system (GIS). The first chapter of my thesis, 'Side Effects of Immunities: The African Slave Trade', proposes and test a novel explanation for the origins of slavery in the tropical regions of the Americas. I argue that Africans were especially attractive for employment in tropical areas because they were immune to many of the diseases that were ravaging those regions. In particular, Africans' resistance to malaria increased the profitability of slaves coming from the most malarial parts of Africa. In the second chapter of my thesis, 'Caste Systems and Technology in Pre-Modern Societies', I advance and test the hypothesis that caste systems, generally viewed as a hindrance to social mobility and development, had been comparatively advantageous at an early stage of economic development. In the third chapter, 'Malaria as Determinant of Modern Ethnolinguistic Diversity', I conjecture that in highly malarious areas the necessity to adapt and develop immunities specific to the local disease environment historically reduced mobility and increased isolation, thus leading to the formation of a higher number of different ethnolinguistic groups. In the final chapter, 'Malaria Risk and Civil Violence: A Disaggregated Analysis for Africa', I explore the relationship between malaria and violent conflicts. Using georeferenced data for Africa, the article shows that violent events are more frequent in areas where malaria risk is higher.