10 resultados para Mitotic spindle
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Akt (also called PKB) is a 63 kDa serine/threonine kinase involved in promotion of cell survival, proliferation a nd metabolic responses downstream the phosphoinositide-3-kinase (PI 3-kinase) signaling pathway. In resting cells, Akt is a predominantly cytosolic enzyme; however generation of PI 3-kinase lipid products recruits Akt to the plasma membrane, resulting in a conformational change which confers full enzymatic activity through the phosphorylation of the membrane-bound protein at two residues, Thr308, and Ser473. Activated Akt redistributes to cytoplasm and nucleus, where phosphorylation of specific substrates occurs. Both the presence and the activity of Akt in the nucleus have been described. An interesting mechanism that mediates nuclear translocation of Akt has been described in human mature T-cell leukemia: the product of TCL1 gene, Tcl1, interacts with the PH domain of phosphorylated Akt, thus driving Akt to the nucleus. In this context, Tcl1 may act as a direct transporter of Akt or may contribute to the formation of a complex that promotes the transport of active Akt to the nucleus, where it can phosphorylate nuclear substrates. A well described nuclear substrate if Foxo. IGF-1 triggers phosphorylation of Foxo by Akt inside the nucleus, where phospho-Foxo associates to 14.3.3 proteins that, in turn, promote its export to the cytoplasm where it is sequestered. Remarkably, Foxo phosphorylation by Akt has been shown to be a crucial event in Akt-dependent myogenesis. However, most Akt nuclear substrates have so far remained elusive, as well as nuclear Akt functions. This lack of information prompted us to undertake a search of substrates of Akt in the nucleus, by the combined use of 2D-separation/mass spectrometry and anti-Akt-phosphosubstrate antibody. This study presents evidence of A-type lamins as novel nuclear substrates of Akt. Lamins are type V intermediate filaments proteins found in the nucleus of higher eukaryotes where, together with lamin-binding proteins, they form the lamina at the nuclear envelope, providing mechanical stability for the nuclear membrane. By coimmunoprecipitation, it is demonstrated here that endogenous lamin A and Akt interact, and that A-type lamins are phosphorylated by Akt both in vitro and in vivo. Moreover, by phosphoaminoacid analysis and mutagenesis, it is further demonstrated that Akt phosphorylates lamin A at Ser404, and, more importantly, that while lamin A/C phosphorylation is stable throughout the cell cycle, phosphorylation of the precursor prelamin A becomes detectable as cells enter the G2 phase, picking at G2/M. This study also shows that lamin phosphorylation by Akt creates a binding site for 14.3.3 adaptors which, in turn, promote prelamin A degradation. While this mechanism is in agreement with a general role of Akt in the regulation of a subset of its substrates, opposite to what has been described, degradation is not mediated through a ubiquitination and proteasomal mechanism but through a lysosomal pathway, as indicated by the reverting action of the lysosomal inhibitor cloroquine. Phosphorylation is a key event in the mitotic breakdown of the nuclear lamina. However, the kinases and the precise sites of phosphorylation are scarcely known. Therefore, these results represent an important breakthrough in this very significant but understudied area. The phosphorylation of the precursor protein prelamin A and its subsequent degradation at G2/M, when both the nuclear envelop and the nuclear lamina disassemble, can be view as part of a mechanism to dispose off the precursor that is not needed in this precise context. The recently reported finding that patients affected by Emery-Dreifuss muscular dystrophy carry a mutation at Arg 401, in the Akt phosphorylation motif, open new perspective that warrant further investigation in this very important field.
Resumo:
Breast carcinoma, one of the most frequent malignancies in women, is a complex disease in which a number of different factors combine to drive pathogenesis. The biopathological characterization of these tumors is essential to determine their aggressiveness and to find the most appropriate therapy. As in others neoplasms, the deregulation of signal transduction pathways is frequently responsible for conferring selective biological advantages to the tumor. Phosphoinositides play an essential role in diverse cellular functions, their metabolism is highly active, and is tightly controlled. Among the enzymes implicated in this pathway, phospholipase C beta 1 (PLCβ1) is one of the key regulators, both at the cytoplasmic and the nuclear level. The PLCβ1 gene maps onto the short arm of chromosome 20, a region that has been shown to be altered in several solid tumors, including breast cancer. In the present study a FISH approach was used to investigate the genetic alterations of the PLCβ1 gene in various classes of breast cancer which differ in their invasiveness and proliferation status, according to their mitotic index. The overall aim was to find out whether this enzyme could be a suitable prognostic marker for this neoplasm. Our results show that 83% of cases had aneusomies at the 20p12 level, and the most frequent alteration is a gain in this specific locus. Indeed, we found that this amplification is not related to the invasion status since there were no differences in amplified tumor frequencies between in situ and invasive breast cancer. On the contrary, the gain of PLCβ1 was significantly related to the mitotic index (p = 0.001). To verify if the change in genetic dosage influences the expression of PLCβ1 we performed Real Time PCR and Immunohystochemical analysis. Our results confirmed that amplified tumors have higher levels of PLCβ1 mRNA, which is the sum of the two splicing isoforms 1a and 1b. On the other hand, even if protein levels were higher in the majority of cases compared to the nontumoral specimens, there were no significant associations between gain and overexpression. Finally, the significant association between the amplification of PLCβ1 and others important clinicopathological parameters, such as grading and hormonal receptors status, confirmed a correlation of this enzyme with the aggressiveness of breast cancer. This suggests that PLCβ1 has the potential to be a prognostic marker in these tumors. However, further work needs to be carried out to validate these preliminary findings.
Resumo:
Aging is a physiological process characterized by a progressive decline of the “cellular homeostatic reserve”, refereed as the capability to respond suitably to exogenous and endogenous stressful stimuli. Due to their high energetic requests and post-mitotic nature, neurons are peculiarly susceptible to this phenomenon. However, the aged brain maintains a certain level of adaptive capacities and if properly stimulated may warrant a considerable functional recovery. Aim of the present research was to verify the plastic potentialities of the aging brain of rats subjected to two kind of exogenous stimuli: A) the replacement of the standard diet with a ketogenic regimen (the change forces the brain to use ketone bodies (KB) in alternative to glucose to satisfy the energetic needs) and B) a behavioural task able to induce the formation of inhibitory avoidance memory. A) Fifteen male Wistar rats of 19 months of age were divided into three groups (average body weight pair-matched), and fed for 8 weeks with different dietary regimens: i) diet containing 10% medium chain triglycerides (MCT); ii) diet containing 20% MCT; iii) standard commercial chow. Five young (5 months of age) and five old (26-27 months of age) animals fed with the standard diet were used as further controls. The following morphological parameters reflecting synaptic plasticity were evaluated in the stratum moleculare of the hippocampal CA1 region (SM CA1), in the outer molecular layer of the hippocampal dentate gyrus (OML DG), and in the granule cell layer of the cerebellar cortex (GCL-CCx): average area (S), numeric density (Nvs), and surface density (Sv) of synapses, and average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria. Moreover, succinic dehydrogenase (SDH) activity was cytochemically determined in Purkinje cells (PC) and V, Nvm, Vv, and cytochemical precipitate area/mitochondrial area (R) of SDH-positive mitochondria were evaluated. In SM CA1, MCT-KDs induced the early appearance of the morphological patterns typical of old animals: higher S and V, and lower Nvs and Nvm. On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nvs and Nvm) vs. controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility of these brain regions to the aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. In GCL-CCx, the results described a new scenario in comparison to that found in the hippocampal formation: 10%MCT-KD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT-KD caused no changes. Since GCL-CCx is more vulnerable to age than DG, and less than CA1, these data further support the hypothesis that MCT-KDs effects in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Regarding PC, it was decided to evaluate only the metabolic effect of the dietetic regimen (20%MCT-KD) characterized by less side effects. KD counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their energetic efficiency (R was significantly higher in MCT-KD-fed rats vs. all the controls). Since it is well known that Purkinje and dentate gyrus cells are less vulnerable to aging than CA1 neurons, these results corroborate our previous hypothesis. In conclusion, the A) experimental line provides the first evidence that morphological and functional parameters reflecting synaptic plasticity and mitochondrial metabolic competence may be modulated by MCT-KDs in the pre-senescent central nervous system, and that the effects may be heterogeneous in different brain regions. MCT-KDs seem to supply high energy metabolic intermediates and to be beneficial (“anti-aging”) for those neurons that maintain the capability to exploit them. This implies risks but also promising potentialities for the therapeutic use of these diets during aging B) Morphological parameters of synapses and synaptic mitochondria in SM CA1 were investigated in old (26-27 month-old) female Wistar rats following a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot-shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 s, respectively) and immediately sacrificed. Nvs, S, Sv, Nvm, V, and Vv were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours vs. 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. These findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.
Resumo:
Objective: To study circadian rhythms (sleep-wake, body core temperature and melatonin circadian rhythms) in patients in vegetative state (VS) in basal condition and after nocturnal blue light exposure. Methods: Eight patients in VS underwent two experimental sessions of 48 consecutive hours polysomnography with body core temperature (BCT) measurement separated by a 1-week interval. For a week between the two experimental sessions, patients underwent nocturnal blue light exposure (470 nm; 58 μW/cm2 for 4 hours from 11.30 p.m. to 3.30 a.m.). Brain MRI, Level of Cognitive Functioning Scale (LCF) and Disability Rating Scale (DRS) were assessed just before polysomnography. Results: In all patients LCF and DRS confirmed vegetative state. All patients showed a sleep-wake cycle. All patients showed spindle or spindle-like activities. REM sleep was detected in only 7 patients. Patients displayed a greater fragmentation of nocturnal sleep due to frequent awakenings. Mean nocturnal sleep efficiency was significantly reduced (40±22 vs. 74±17) in VS patients respect to controls. A significantly increasing of phase 1 and a significantly reduction of phase 2 and phase 3 were observed too. A modification of diurnal sleep total time and of diurnal duration of REM sleep were found after 1-week nocturnal blue light exposure. All patients displayed a normal BCT 24-h rhythm in basal condition and after nocturnal blue light exposure. A reduction of mean nocturnal melatonin levels in basal condition were observed in VS patients. Melatonin suppression after blue light exposure was observed in only 2 patients in VS. Conclusions: We found disorganized sleep-wake cycle and a normal BCT rhythm in our patients in VS. A reduction of mean nocturnal melatonin levels in basal condition were observed too.
Resumo:
Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.
Resumo:
Objectives: Human Herpesvirus 8 (HHV-8) is the etiological agent of Kaposi’s Sarcoma (KS) and it is also associated with two B cell lymphoproliferative diseases: primary effusion lymphoma (PEL), and the plasmablastic form of multicentric Castelman’s disease (MCD). HHV-8 establishes persistent infection in the host with tropism for multiple cell types. In KS patients, the virus is found in tumor-spindle cells, peripheral blood monocytes, endothelial progenitor circulating cells, T and B lymphocytes. Peripheral B cells represent one of the major virus reservoir, but the consequences of HHV-8 infection of these cells have been poorly characterized. Therefore, in this study the frequency, the immunophenotypic profile and the functional activity of different peripheral B cell subsets in patients with classic KS (cKS) was analysed in order to identify potential alterations of these cells. The classic variant of KS is ideal to perform such studies, as it lacks confounding factors such as HIV or EBV infection and immunosuppression. Methods: Whole-blood samples from patients with the classical form of KS (cKS) (n=62) and healthy age and sex-matched seronegative controls (HSN) (n=43) were analyzed by multiparametric flow-cytometry to determine the frequency of B cells and their subpopulations, as well as their surface expression of immunoglobulins and activation markers. Results: The frequency of circulating B cells was significantly higher in cKS patients than in controls. In particular, the analysis of the B cell subsets revealed a higher frequency of naïve B cells (CD19+CD27-), among which transitional CD19+CD38highCD5+ and pre-naïve (CD27-CD38intCD5+ ) B cells demonstrated an expansion. Memory B cells (CD19+CD27+) did not differ between the two study groups, except from a higher frequency of CD19+CD27+IgM+IgD+ B cells, the typical phenotype of marginal zone (MZ) B cells, in cKS patients. The characterization of membrane surface activation markers showed lower levels of the activation marker HLA-DR only on CD27- B cells, while CD80 and CD86 were less represented in all the the B cells from cKS patients. Moreover, B cells from cKS patients were smaller and with less granules than the ones from controls. Conclusion: Taken together, these results clearly indicate that circulating B cells are altered in patients with cKS, showing an expansion of the immature phenotypes. These B cell alterations may be due to an indirect viral effect rather than to a direct one: the cytokines expressed in the microenvironment typical of cKS may cause a faster release of immature cells from the bone marrow and a lower grade of peripheral differentiation, as already suggested for other chronic viral infections such as HIV and HCV. Further studies will be necessary to understand how these alterations contribute to the pathogenesis of KS and, eventually, to the different clinical evolution of the disease.
Resumo:
REST is a zinc-finger transcription factor implicated in several processes such as maintenance of embryonic stem cell pluripotency and regulation of mitotic fidelity in non-neuronal cells [Chong et al., 1995]. The gene encodes for a 116-kDa protein that acts as a molecular platform for co-repressors recruitment and promotes modifications of DNA and histones [Ballas, 2005]. REST showed different apparent molecular weights, consistent with the possible presence of post-translational modifications [Lee et al., 2000]. Among these the most common is glycosylation, the covalent attachment of carbohydrates during or after protein synthesis [Apweiler et al., 1999] My thesis has ascertained, for the first time, the presence of glycan chians in the transcription factor REST. Through enzymatic deglycosylation and MS, oligosaccharide composition of glycan chains was evaluated: a complex mixture of glycans, composed of N-acetylgalactosamine, galactose and mannose, was observed thus confirming the presence of O- and N-linked glycan chains. Glycosylation site mapping was done using a 18O-labeling method and MS/MS and twelve potential N-glycosylation sites were identified. The most probable glycosylation target residues were mutated through site-directed mutagenesis and REST mutants were expressed in different cell lines. Variations in the protein molecular weight and mutant REST ability to bind the RE-1 sequence were analyzed. Gene reporter assays showed that, altogether, removal of N-linked glycan chains causes loss of transcriptional repressor function, except for mutant N59 which showed a slight residual repressor activity in presence of IGF-I. Taken togheter these results demonstrate the presence of complex glycan chians in the transcription factor REST: I have depicted their composition, started defining their position on the protein backbone and identified their possible role in the transcription factor functioning. Considering the crucial role of glycosylation and transcription factors activity in the aetiology of many diseases, any further knowledge could find important and interesting pharmacological application.
Resumo:
This was a retrospective study including ninety samples of dogs with a histological diagnosis of intermediate grade cutaneous mast cell tumour (MCT). The objectives of the study were to validate Minichromosome Maintenance Protein 7 (MCM7) as a prognostic marker in MCTs and to compare the ability of mitotic index (MI), Ki67 and MCM7 to predict outcome. The median survival for the entire population was not reached at 2099 days. The mean survival time was 1708 days. Seventy-two cases were censored after a median follow up of 1136 days and eighteen dogs died for causes related to the MCT after a median of 116 days. For each sample MI, Ki67 and MCM7 were determined. The Receiver Operating Characteristic (ROC) curve was obtained for each prognostic marker to evaluate the performance of the test, expressed as area under the curve, and whether the published threshold value was adequate. Kaplan-Meier and corresponding logrank test for MI, Ki67 and MCM7 as binary variables was highly significant (P<0.0001). Multivariable regression analysis of MI, Ki67 and MCM7 corrected for age and surgical margins indicated that the higher risk of dying of MCT was associated with MCM7 > 0.18 (Hazard Ration [HR] 14.7; P<0.001) followed by MI > 5 (HR 13.9; P<0.001) and Ki67 > 0.018 (HR 8.9; P<0.001). Concluding, the present study confirmed that MCM7 is an excellent prognostic marker in cutaneous MCTs being able to divide Patnaik intermediate grade tumours in two categories with different prognosis. Ki67 was equally good confirming its value as a prognostic marker in intermediate grade MCTs. The mitotic index was extremely specific, but lacked of sensitivity. Interestingly, mitotic index, Ki67 and MCM7 were independent from each other suggesting that their combination would improve their individual prognostic value.
Resumo:
The introduction of dwarfed rootstocks in apple crop has led to a new concept of intensive planting systems with the aim of producing early high yield and with returns of the initial high investment. Although yield is an important aspect to the grower, the consumer has become demanding regards fruit quality and is generally attracted by appearance. To fulfil the consumer’s expectations the grower may need to choose a proper training system along with an ideal pruning technique, which ensure a good light distribution in different parts of the canopy and a marketable fruit quality in terms of size and skin colour. Although these aspects are important, these fruits might not reach the proper ripening stage within the canopy because they are often heterogeneous. To describe the variability present in a tree, a software (PlantToon®), was used to recreate the tree architecture in 3D in the two training systems. The ripening stage of each of the fruits was determined using a non-destructive device (DA-Meter), thus allowing to estimate the fruit ripening variability. This study deals with some of the main parameters that can influence fruit quality and ripening stage within the canopy and orchard management techniques that can ameliorate a ripening fruit homogeneity. Significant differences in fruit quality were found within the canopies due to their position, flowering time and bud wood age. Bi-axis appeared to be suitable for high density planting, even though the fruit quality traits resulted often similar to those obtained with a Slender Spindle, suggesting similar fruit light availability within the canopies. Crop load confirmed to be an important factor that influenced fruit quality as much as the interesting innovative pruning method “Click”, in intensive planting systems.
Resumo:
Protein-adsorption occurs immediately following implantation of biomaterials. It is unknown at which extent protein-adsorption impacts the cellular events at bone-implant interface. To investigate this question, we compared the in-vitro outcome of osteoblastic cells grown onto titanium substrates and glass as control, by modulating the exposure to serum-derived proteins. Substrates consisted of 1) polished titanium disks; 2) polished disks nanotextured with H2SO4/H2O2; 3) glass. In the pre-adsorption phase, substrates were treated for 1h with αMEM alone (M-noFBS) or supplemented with 10%-foetal-bovine-serum (M-FBS). MC3T3-osteoblastic-cells were cultured on the pre-treated substrates for 3h and 24h, in M-noFBS and M-FBS. Subsequently, the culture medium was replaced with M-FBS and cultures maintained for 3 and 7days. Cell-number was evaluated by: Alamar-Blue and MTT assay. Mitotic- and osteogenic-activities were evaluated through fluorescence-optical-microscope by immunolabeling for Ki-67 nuclear-protein and Osteopontin. Cellular morphology was evaluated by SEM-imaging. Data were statistically analyzed using ANOVA-test, (p<0.05). At day3 and day7, the presence or absence of serum-derived proteins during the pre-adsorption phase had not significant effect on cell-number. Only the absence of FBS during 24h of culture significantly affected cell-number (p<0.0001). Titanium surfaces performed better than glass, (p<0.01). The growth rate of cells between day3 and 7 was not affected by the initial absence of FBS. Immunolabeling for Ki-67 and Osteopontin showed that the mitotic- and osteogenic- activity were ongoing at 72h. SEM-analysis revealed that the absence of FBS had no major influence on cell-shape. • Physico-chemical interactions without mediation by proteins are sufficient to sustain the initial phase of culture and guide osteogenic-cells toward differentiation. • The challenge is avoiding adsorption of ‘undesirables’ molecules that negatively impact on the cueing cells receive from surface. This may not be a problem in healthy patients, but may have an important role in medically-compromised-individuals in whom the composition of tissue-fluids is altered.