3 resultados para Mismatch Repair Genes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Cancer Genome Atlas (TCGA) collaborative project identified four distinct prognostic groups of endometrial carcinoma (EC) based on molecular alterations: (i) the ultramutated subtype that encompassed POLE mutated (POLE) cases; (ii) the hypermutated subtype, characterized by MisMatch Repair deficiency (MMRd); (iii) the copy-number high subtype, with p53 abnormal/mutated features (p53abn); (iv) the copy-number low subtype, known as No Specific Molecular Profile (NSMP). Although the prognostic value of TCGA molecular classification, NSMP tumors present a wide variability in molecular alterations and biological aggressiveness. This study aims to investigate the impact of ARID1A and CTNNB1/β-catenin alterations by targeted Next-generation sequencing (NGS) and immunohistochemistry (IHC) in a consecutive series of 125 molecularly classified ECs. NGS and IHC were used to assign surrogate TCGA groups and to identify molecular alterations of multiple target genes including POLE, PTEN, ARID1A, CTNNB1, TP53. Associations with clinicopathologic parameters, molecular subtypes, and outcomes identified NSMP category as the most heterogeneous group in terms of clinicopathologic features and outcome. Integration of surrogate TCGA molecular classification with ARID1A and β-catenin analysis showed NSMP cases with ARID1A mutation characterized by the worst outcome with early recurrence, while NSMP tumors with ARID1A wild-type and β-catenin alteration had indolent clinicopathologic features and no recurrence. This study indicates how the identification of ARID1A and β-catenin alterations in EC represents a simple and effective way to characterize NSMP tumor aggressiveness and metastatic potential.
Resumo:
The principle aim of this study was to investigate biological predictors of response and resistance to multiple myeloma treatment. Two hypothesis had been proposed as responsible of responsiveness: SNPs in DNA repair and Folate pathway, and P-gp dependent efflux. As a first objective, panel of SNPs in DNA repair and Folate pathway genes, were analyzed. It was a retrospective study in a group of 454, previously untreated, MM patients enrolled in a randomized phase III open-label study. Results show that some SNPs in Folate pathway are correlated with response to MM treatment. MTR genotype was associated with favorable response in the overall population of MM patients. However, this relation, disappear after adjustment for treatment response. When poor responder includes very good partial response, partial response and stable/progressive disease MTFHR rs1801131 genotype was associated with poor response to therapy. This relation - unlike in MTR – was still significant after adjustment for treatment response. Identification of this genetic variant in MM patients could be used as an independent prognostic factor for therapeutic outcome in the clinical practice. In the second objective, basic disposition characteristics of bortezomib was investigated. We demonstrated that bortezomib is a P-gp substrate in a bi-directional transport study. We obtain apparent permeability rate values that together with solubility values can have a crucial implication in better understanding of bortezomib pharmacokinetics with respect to the importance of membrane transporters. Subsequently, in view of the importance of P-gp for bortezomib responsiveness a panel of SNPs in ABCB1 gene - coding for P-gp - were analyzed. In particular we analyzed five SNPs, none of them however correlated with treatment responsiveness. However, we found a significant association between ABCB1 variants and cytogenetic abnormalities. In particular, deletion of chromosome 17 and t(4;14) translocation were present in patients harboring rs60023214 and rs2038502 variants respectively.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.