6 resultados para Minutes--Committees--Emerging Technologies

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper hazard identification has become progressively more difficult to achieve, as witnessed by several major accidents that took place in Europe, such as the Ammonium Nitrate explosion at Toulouse (2001) and the vapour cloud explosion at Buncefield (2005), whose accident scenarios were not considered by their site safety case. Furthermore, the rapid renewal in the industrial technology has brought about the need to upgrade hazard identification methodologies. Accident scenarios of emerging technologies, which are not still properly identified, may remain unidentified until they take place for the first time. The consideration of atypical scenarios deviating from normal expectations of unwanted events or worst case reference scenarios is thus extremely challenging. A specific method named Dynamic Procedure for Atypical Scenarios Identification (DyPASI) was developed as a complementary tool to bow-tie identification techniques. The main aim of the methodology is to provide an easier but comprehensive hazard identification of the industrial process analysed, by systematizing information from early signals of risk related to past events, near misses and inherent studies. DyPASI was validated on the two examples of new and emerging technologies: Liquefied Natural Gas regasification and Carbon Capture and Storage. The study broadened the knowledge on the related emerging risks and, at the same time, demonstrated that DyPASI is a valuable tool to obtain a complete and updated overview of potential hazards. Moreover, in order to tackle underlying accident causes of atypical events, three methods for the development of early warning indicators were assessed: the Resilience-based Early Warning Indicator (REWI) method, the Dual Assurance method and the Emerging Risk Key Performance Indicator method. REWI was found to be the most complementary and effective of the three, demonstrating that its synergy with DyPASI would be an adequate strategy to improve hazard identification methodologies towards the capture of atypical accident scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro di tesi si è elaborato un quadro di riferimento per l’utilizzo combinato di due metodologie di valutazione di impatti LCA e RA, per tecnologie emergenti. L’originalità dello studio sta nell’aver proposto e anche applicato il quadro di riferimento ad un caso studio, in particolare ad una tecnologia innovativa di refrigerazione, basata su nanofluidi (NF), sviluppata da partner del progetto Europeo Nanohex che hanno collaborato all’elaborazione degli studi soprattutto per quanto riguarda l’inventario dei dati necessari. La complessità dello studio è da ritrovare tanto nella difficile integrazione di due metodologie nate per scopi differenti e strutturate per assolvere a quegli scopi, quanto nel settore di applicazione che seppur in forte espansione ha delle forti lacune di informazioni circa processi di produzione e comportamento delle sostanze. L’applicazione è stata effettuata sulla produzione di nanofluido (NF) di allumina secondo due vie produttive (single-stage e two-stage) per valutare e confrontare gli impatti per la salute umana e l’ambiente. Occorre specificare che il LCA è stato quantitativo ma non ha considerato gli impatti dei NM nelle categorie di tossicità. Per quanto concerne il RA è stato sviluppato uno studio di tipo qualitativo, a causa della problematica di carenza di parametri tossicologici e di esposizione su citata avente come focus la categoria dei lavoratori, pertanto è stata fatta l’assunzione che i rilasci in ambiente durante la fase di produzione sono trascurabili. Per il RA qualitativo è stato utilizzato un SW specifico, lo Stoffenmanger-Nano che rende possibile la prioritizzazione dei rischi associati ad inalazione in ambiente di lavoro. Il quadro di riferimento prevede una procedura articolata in quattro fasi: DEFINIZIONE SISTEMA TECNOLOGICO, RACCOLTA DATI, VALUTAZIONE DEL RISCHIO E QUANTIFICAZIONE DEGLI IMPATTI, INTERPRETAZIONE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in aquaculture operations worldwide has provided new opportunities for the transmission of aquatic viruses. The occurrence of viral diseases remains a significant limiting factor in aquaculture production and for the sustainability. The ability to identify quickly the presence/absence of a pathogenic organism in fish would have significant advantages for the aquaculture systems. Several molecular methods have found successful application in fish pathology both for confirmatory diagnosis of overt diseases and for detection of asymptomatic infections. However, a lot of different variants occur among fish host species and virus strains and consequently specific methods need to be developed and optimized for each pathogen and often also for each host species. The first chapter of this PhD thesis presents a complete description of the major viruses that infect fish and provides a relevant information regarding the most common methods and emerging technologies for the molecular diagnosis of viral diseases of fish. The development and application of a real time PCR assay for the detection and quantification of lymphocystivirus was described in the second chapter. It showed to be highly sensitive, specific, reproducible and versatile for the detection and quantitation of lymphocystivirus. The use of this technique can find multiple application such as asymptomatic carrier detection or pathogenesis studies of different LCDV strains. The third chapter, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and sleeping disease (SD) in a single assay. This method was able to efficiently detect the viral RNA in tissue samples, showing the presence of single infections and co-infections in rainbow trout samples. The mRT-PCR method was revealed to be an accurate and fast method to support traditional diagnostic techniques in the diagnosis of major viral diseases of rainbow trout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question “artificial nutrition and hydration (ANH) is therapy or not?” is one of the key point of end-of-life issues in Italy, since it was (and it is also nowadays) a strategic and crucial point of the Italian Bioethics discussion about the last phases of human life: determining if ANH is therapy implies the possibility of being included in the list of treatments that could be mentioned for refusal within the living will document. But who is entitled to decide and judge if ANH is a therapy or not? Scientists? The Legislator? Judges? Patients? This issue at first sight seems just a matter of science, but at stake there is more than a scientific definition. According to several scholars, we are in the era of post-academic Science, in which Science broaden discussion, production, negotation and decision to other social groups that are not just the scientific communities. In this process, called co-production, on one hand scientific knowledge derives from the interaction between scientists and society at large. On the other hand, science is functional to co-production of social order. The continuous negotation on which science has to be used in social decisions is just the evidence of the mirroring negotation for different way to structure and interpret society. Thus, in the interaction between Science and Law, deciding what kind of Science could be suitable for a specific kind of Law, envisages a well defined idea of society behind this choice. I have analysed both the legislative path (still in progress) in the living will act production in Italy and Eluana Englaro’s judicial case (that somehow collapsed in the living will act negotiation), using official documents (hearings, texts of the official conference, committees comments and ruling texts) and interviewing key actors in the two processes from the science communication point of view (who talks in the name of science? Who defines what is a therapy? And how do they do?), finding support on the theoretical framework of the Science&Technologies Studies (S&TS).