4 resultados para Mining town
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Salt deposits characterize the subsurface of Tuzla (BiH) and made it famous since the ancient times. Archeological discoveries demonstrate the presence of a Neolithic pile-dwelling settlement related to the existence of saltwater springs that contributed to make the most of the area a swampy ground. Since the Roman times, the town is reported as “the City of Salt deposits and Springs”; "tuz" is the Turkish word for salt, as the Ottomans renamed the settlement in the 15th century following their conquest of the medieval Bosnia (Donia and Fine, 1994). Natural brine springs were located everywhere and salt has been evaporated by means of hot charcoals since pre-Roman times. The ancient use of salt was just a small exploitation compared to the massive salt production carried out during the 20th century by means of classical mine methodologies and especially wild brine pumping. In the past salt extraction was practised tapping natural brine springs, while the modern technique consists in about 100 boreholes with pumps tapped to the natural underground brine runs, at an average depth of 400-500 m. The mining operation changed the hydrogeological conditions enabling the downward flow of fresh water causing additional salt dissolution. This process induced severe ground subsidence during the last 60 years reaching up to 10 meters of sinking in the most affected area. Stress and strain of the overlying rocks induced the formation of numerous fractures over a conspicuous area (3 Km2). Consequently serious damages occurred to buildings and infrastructures such as water supply system, sewage networks and power lines. Downtown urban life was compromised by the destruction of more than 2000 buildings that collapsed or needed to be demolished causing the resettlement of about 15000 inhabitants (Tatić, 1979). Recently salt extraction activities have been strongly reduced, but the underground water system is returning to his natural conditions, threatening the flooding of the most collapsed area. During the last 60 years local government developed a monitoring system of the phenomenon, collecting several data about geodetic measurements, amount of brine pumped, piezometry, lithostratigraphy, extension of the salt body and geotechnical parameters. A database was created within a scientific cooperation between the municipality of Tuzla and the city of Rotterdam (D.O.O. Mining Institute Tuzla, 2000). The scientific investigation presented in this dissertation has been financially supported by a cooperation project between the Municipality of Tuzla, The University of Bologna (CIRSA) and the Province of Ravenna. The University of Tuzla (RGGF) gave an important scientific support in particular about the geological and hydrogeological features. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well understood in a few areas (Gutierrez et al., 2008). The subject of this study is the collapsing phenomenon occurring in Tuzla area with the aim to identify and quantify the several factors involved in the system and their correlations. Tuzla subsidence phenomenon can be defined as geohazard, which represents the consequence of an adverse combination of geological processes and ground conditions precipitated by human activity with the potential to cause harm (Rosenbaum and Culshaw, 2003). Where an hazard induces a risk to a vulnerable element, a risk management process is required. The single factors involved in the subsidence of Tuzla can be considered as hazards. The final objective of this dissertation represents a preliminary risk assessment procedure and guidelines, developed in order to quantify the buildings vulnerability in relation to the overall geohazard that affect the town. The historical available database, never fully processed, have been analyzed by means of geographic information systems and mathematical interpolators (PART I). Modern geomatic applications have been implemented to deeply investigate the most relevant hazards (PART II). In order to monitor and quantify the actual subsidence rates, geodetic GPS technologies have been implemented and 4 survey campaigns have been carried out once a year. Subsidence related fractures system has been identified by means of field surveys and mathematical interpretations of the sinking surface, called curvature analysis. The comparison of mapped and predicted fractures leaded to a better comprehension of the problem. Results confirmed the reliability of fractures identification using curvature analysis applied to sinking data instead of topographic or seismic data. Urban changes evolution has been reconstructed analyzing topographic maps and satellite imageries, identifying the most damaged areas. This part of the investigation was very important for the quantification of buildings vulnerability.
Resumo:
Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.
Resumo:
This thesis analyses problems related to the applicability, in business environments, of Process Mining tools and techniques. The first contribution is a presentation of the state of the art of Process Mining and a characterization of companies, in terms of their "process awareness". The work continues identifying circumstance where problems can emerge: data preparation; actual mining; and results interpretation. Other problems are the configuration of parameters by not-expert users and computational complexity. We concentrate on two possible scenarios: "batch" and "on-line" Process Mining. Concerning the batch Process Mining, we first investigated the data preparation problem and we proposed a solution for the identification of the "case-ids" whenever this field is not explicitly indicated. After that, we concentrated on problems at mining time and we propose the generalization of a well-known control-flow discovery algorithm in order to exploit non instantaneous events. The usage of interval-based recording leads to an important improvement of performance. Later on, we report our work on the parameters configuration for not-expert users. We present two approaches to select the "best" parameters configuration: one is completely autonomous; the other requires human interaction to navigate a hierarchy of candidate models. Concerning the data interpretation and results evaluation, we propose two metrics: a model-to-model and a model-to-log. Finally, we present an automatic approach for the extension of a control-flow model with social information, in order to simplify the analysis of these perspectives. The second part of this thesis deals with control-flow discovery algorithms in on-line settings. We propose a formal definition of the problem, and two baseline approaches. The actual mining algorithms proposed are two: the first is the adaptation, to the control-flow discovery problem, of a frequency counting algorithm; the second constitutes a framework of models which can be used for different kinds of streams (stationary versus evolving).
Development of glass-ceramics from combination of industrial wastes together with boron mining waste
Resumo:
The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3–P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite (SiO2-Al2O3-CaO )glass-ceramics from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering between 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates. The properties of the obtained materials show; the articles with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.