2 resultados para Micro-imaging
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with no curative pharmacological treatment. Animal models play an essential role in revealing molecular mechanisms involved in the pathogenesis of the disease. Bleomycin (BLM)-induced lung fibrosis is the most widely used and characterized model for anti-fibrotic drugs screening. However, several issues have been reported, such as the identification of an optimal BLM dose and administration scheme as well as gender-specificity. Moreover, the balance between disease resolution, an appropriate time window for therapeutic intervention and animal welfare remains critical aspects yet to be fully elucidated. In this thesis, Micro CT imaging has been used as a tool to identify the ideal BLM dose regimen to induce sustained lung fibrosis in mice as well as to assess the anti-fibrotic effect of Nintedanib (NINT) treatment upon this BLM administration regimen. In order to select the optimal BLM dose scheme, C57bl/6 male mice were treated with BLM via oropharyngeal aspiration (OA), following either double or triple BLM administration. The triple BLM administration resulted in the most promising scheme, able to balance disease resolution, appropriate time-window for therapeutic intervention and animal welfare. The fibrosis progression was longitudinally assessed by micro-CT every 7 days for 5 weeks after BLM administration and 5 animals were sacrificed at each timepoint for the BALF and histological evaluation. The antifibrotic effect of NINT was assessed following different treatment regimens in this model. Herein, we have developed an optimized mouse model of pulmonary fibrosis, enabling three weeks of the therapeutic window to screen putative anti-fibrotic drugs. micro-CT scanning, allowed us to monitor the progression of lung fibrosis and the therapeutical response longitudinally in the same subject, drastically reducing the number of animals involved in the experiment.
Resumo:
Cleaning is one of the most important and delicate procedures that are part of the restoration process. When developing new systems, it is fundamental to consider its selectivity towards the layer to-be-removed, non-invasiveness towards the one to-be-preserved, its sustainability and non-toxicity. Besides assessing its efficacy, it is important to understand its mechanism by analytical protocols that strike a balance between cost, practicality, and reliable interpretation of results. In this thesis, the development of cleaning systems based on the coupling of electrospun fabrics (ES) and greener organic solvents is proposed. Electrospinning is a versatile technique that allows the production of micro/nanostructured non-woven mats, which have already been used as absorbents in various scientific fields, but to date, not in the restoration field. The systems produced proved to be effective for the removal of dammar varnish from paintings, where the ES not only act as solvent-binding agents but also as adsorbents towards the partially solubilised varnish due to capillary rise, thus enabling a one-step procedure. They have also been successfully applied for the removal of spray varnish from marble substrates and wall paintings. Due to the materials' complexity, the procedure had to be adapted case-by-case and mechanical action was still necessary. According to the spinning solution, three types of ES mats have been produced: polyamide 6,6, pullulan and pullulan with melanin nanoparticles. The latter, under irradiation, allows for a localised temperature increase accelerating and facilitating the removal of less soluble layers (e.g. reticulated alkyd-based paints). All the systems produced, and the mock-ups used were extensively characterised using multi-analytical protocols. Finally, a monitoring protocol and image treatment based on photoluminescence macro-imaging is proposed. This set-up allowed the study of the removal mechanism of dammar varnish and semi-quantify its residues. These initial results form the basis for optimising the acquisition set-up and data processing.