3 resultados para Micro-element

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three finfish species frequently caught in the waters of the Gulf of Manfredonia (Apulia, Italy) were studied in order to know how the flesh composition (proximate, fatty acid, macro- and micro- element contents) could be affected by the season effect. The species we examined were European hake (Merluccius merluccius), chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus), which were analysed at the raw state in three catch season and after cooking in two catch season. More precisely, European hake and chub mackerel caught during winter, summer and fall were analysed at the raw state. The composition of the flesh of grilled European hake and chub mackerel was study on fish caught in winter and fall. Horse mackerel of summer and winter catches were analysed both at the raw and grilled state. Furthermore, an overall sensory profile was outlined for each species in two catch season and the relevant spider web diagrams compared. On the whole, two hundred and eighty fish were analysed during this research project in order to obtain a nutritional profile of the three species. One hundred and fifty was the overall number of specimens used to create complete sensory profiles and compare them among the species. The three finfish species proved to be quite interesting for their proximate, fatty acids, macro- and micro-element contents. Nutritional and sensory changes occurred as seasons elapsed for chub and horse mackerel only. A high variability of flesh composition seemed to characterise these two species. European hake confirmed its mild sensory profile and good nutritional characteristics, which were not affected by any season effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teeth, with their high mineralisation, incremental growth, and lack of remodelling, serve as biological archives that document an individual's development. This project aims to utilise the potential of teeth in bioarchaeological studies to achieve three primary objectives: 1) to investigate the application of histological and histochemical methods in reconstructing developmental bio-chronologies and early life histories; 2) to refine the temporal precision of isotopic analysis of dentine collagen by developing a novel protocol that integrates micro-sampling techniques with high-resolution histomorphometrics; and 3) to synthesise data from enamel and dentine for a comprehensive understanding of early life development and dietary transitions. This study adopts an integrated multidisciplinary bioarchaeological approach, conducting histomorphometric analysis on enamel and dentine across deciduous and permanent dentitions. It applies high-temporal resolution trace element analysis to enamel using LA-ICPMS and δ13C and δ15N isotope analyses through sequential micro-sampling to dentine of permanent teeth. Samples were selected from diverse archaeological contexts across the Italian peninsula, covering the Upper Palaeolithic, Copper Age, and Early Medieval periods, providing insight into diachronic variations in infant development and life history. Findings highlight the efficacy of histological and histochemical techniques in accurately determining growth rates, physiological stress, dietary shifts (particularly timing of weaning), and age at death in infant remains. The consistency and comparison between enamel and dentine underscores the enhanced insight obtained from integrating information from both tissues. Importantly, the newly proposed protocol significantly improves the temporal accuracy of dentine collagen analysis, facilitating precise chronological placement of the results over broad developmental associations. This study reaffirms the significance of teeth as valuable bioarchaeological instruments. By introducing and testing multidisciplinary methods, it provides deeper insights into early life history and cultural practices across diverse chronological contexts, highlighting the importance of advanced methodologies in extracting detailed, accurate, and nuanced information from past populations.