13 resultados para Micro Heat Transfer
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.
Resumo:
Due to increased interest in miniaturization, great attention has been given in the recent decade to the micro heat exchanging systems. Literature survey suggests that there is still a limited understanding of gas flows in micro heat exchanging systems. The aim of the current thesis is to further the understanding of fluid flow and heat transfer phenomenon inside such geometries when a compressible working fluid is utilized. A combined experimental and numerical approach has been utilized in order to overcome the lack of employable sensors for micro dimensional channels. After conducting a detailed comparison between various data reduction methodologies employed in the literature, the best suited methodology for gas microflow experimentalists is proposed. A transitional turbulence model is extensively validated against the experimental results of the microtubes and microchannels under adiabatic wall conditions. Heat transfer analysis of single microtubes showed that when the compressible working fluid is used, Nusselt number results are in partial disagreement with the conventional theory at highly turbulent flow regime for microtubes having a hydraulic diameter less than 250 microns. Experimental and numerical analysis on a prototype double layer microchannel heat exchanger showed that compressibility is detrimental to the thermal performance. It has been found that compressibility effects for micro heat exchangers are significant when the average Mach number at the outlet of the microchannel is greater than 0.1 compared to the adiabatic limit of 0.3. Lastly, to avoid a staggering amount of the computational power needed to simulate the micro heat exchanging systems with hundreds of microchannels, a reduced order model based on the porous medium has been developed that considers the compressibility of the gas inside microchannels. The validation of the proposed model against experimental results of average thermal effectiveness and the pressure loss showed an excellent match between the two.
Resumo:
In the present work, the multi-objective optimization by genetic algorithms is investigated and applied to heat transfer problems. Firstly, the work aims to compare different reproduction processes employed by genetic algorithms and two new promising processes are suggested. Secondly, in this work two heat transfer problems are studied under the multi-objective point of view. Specifically, the two cases studied are the wavy fins and the corrugated wall channel. Both these cases have already been studied by a single objective optimizer. Therefore, this work aims to extend the previous works in a more comprehensive study.
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
In the present work, a multi physics simulation of an innovative safety system for light water nuclear reactor is performed, with the aim to increase the reliability of its main decay heat removal system. The system studied, denoted by the acronym PERSEO (in Pool Energy Removal System for Emergency Operation) is able to remove the decay power from the primary side of the light water nuclear reactor through a heat suppression pool. The experimental facility, located at SIET laboratories (PIACENZA), is an evolution of the Thermal Valve concept where the triggering valve is installed liquid side, on a line connecting two pools at the bottom. During the normal operation, the valve is closed, while in emergency conditions it opens, the heat exchanger is flooded with consequent heat transfer from the primary side to the pool side. In order to verify the correct system behavior during long term accidental transient, two main experimental PERSEO tests are analyzed. For this purpose, a coupling between the mono dimensional system code CATHARE, which reproduces the system scale behavior, with a three-dimensional CFD code NEPTUNE CFD, allowing a full investigation of the pools and the injector, is implemented. The coupling between the two codes is realized through the boundary conditions. In a first analysis, the facility is simulated by the system code CATHARE V2.5 to validate the results with the experimental data. The comparison of the numerical results obtained shows a different void distribution during the boiling conditions inside the heat suppression pool for the two cases of single nodalization and three volume nodalization scheme of the pool. Finaly, to improve the investigation capability of the void distribution inside the pool and the temperature stratification phenomena below the injector, a two and three dimensional CFD models with a simplified geometry of the system are adopted.
Resumo:
New concepts on porosity appraisal in ancient and modern construction materials. The role of Fractal Geometry on porosity characterization and transport phenomena. This work studied the potential of Fractal Geometry to the characterization of porous materials. Besides the descriptive aspects of the pore size distribution, the fractal dimensions have led to the development of rational relations for the prediction of permeability coefficients to fluid and heat transfer. The research considered natural materials used in historical buildings (rock and earth) as well as currently employed materials as hydraulic cement and technologically advanced materials such as silicon carbide or YSZ ceramics. The experimental results of porosity derived from the techniques of mercury intrusion and from the image analysis. Data elaboration was carried out according to established procedures of Fractal Geometry. It was found that certain classes of materials are clearly fractal and respond to simple patterns such as Sierpinski and Menger models. In several cases, however, the fractal character is not recognised because the microstructure of the material is based on different phases at different dimensional scales, and in consequence the “fractal dimensions” calculated from porosimetric data do not come within the standard range (less than 3). Using different type and numbers of fractal units is possible, however, to obtain “virtual” microstructures that have the fraction of voids and pore size distribution equivalent with the experimental ones for almost any material. Thus it was possible to take the expressions for the permeability and the thermal conduction which does not require empirical “constants”, these expressions have also provided values that are generally in agreement with the experimental available data. More problematic has been the fractal discussion of the geometry of the rupture of the material subjected to mechanical stress both external and internal applied. The results achieved on these issues are qualitative and prone to future studies. Keywords: Materials, Microstructure, Porosity, Fractal Geometry, Permeability, Thermal conduction, Mechanical strength.
Resumo:
Among various nanoparticles, noble metal nanoparticles have attracted considerable attention due to their optical, catalytic and conducting properties. This work has been focused on the development of an innovative method of synthesis for the preparation of metal nanosuspensions of Au, Ag, Cu, in order to achieve stable sols, showing suitable features to allow an industrial scale up of the processes. The research was developed in collaboration with a company interested in the large scale production of the studied nanosuspensions. In order to develop a commercial process, high solid concentration, long time colloidal stability and particle size control, are required. Two synthesis routes, differing by the used solvents, have been implemented: polyol based and water based synthesis. In order to achieve a process intensification the microwave heating has been applied. As a result, colloidal nanosuspensions with suitable dimensions, good optical properties, very high solid content and good stability, have been synthesized by simple and environmental friendly methods. Particularly, due to some interesting results an optimized synthesis process has been patented. Both water and polyol based synthesis, developed in the presence of a reducing agent and of a chelating polymer, allowed to obtain particle size-control and colloidal stability by tuning the different parameters. Furthermore, it has been verified that microwave device, due to its rapid and homogeneous heating, provides some advantages over conventional method. In order to optimize the final suspensions properties, for each synthesis it has been studied the effect of different parameters (temperature, time, precursors concentrations, etc) and throughout a specific optimization action a right control on nucleation and growth processes has been achieved. The achieved nanoparticles were confirmed by XRD analysis to be the desired metal phases, even at the lowest synthesis temperatures. The particles showed a diameter, measured by STEM and dynamic light scattering technique (DLS), ranging from 10 to 60 nm. Surface plasmon resonance (SPR) was monitored by UV-VIS spectroscopy confirming its dependence by nanoparticles size and shape. Moreover the reaction yield has been assessed by ICP analysis performed on the unreacted metal cations. Finally, thermal conductivity and antibacterial activity characterizations of copper and silver sols respectively are now ongoing in order to check their application as nanofluid in heat transfer processes and as antibacterial agent.
Resumo:
La tesi di Dottorato studia il flusso sanguigno tramite un codice agli elementi finiti (COMSOL Multiphysics). Nell’arteria è presente un catetere Doppler (in posizione concentrica o decentrata rispetto all’asse di simmetria) o di stenosi di varia forma ed estensione. Le arterie sono solidi cilindrici rigidi, elastici o iperelastici. Le arterie hanno diametri di 6 mm, 5 mm, 4 mm e 2 mm. Il flusso ematico è in regime laminare stazionario e transitorio, ed il sangue è un fluido non-Newtoniano di Casson, modificato secondo la formulazione di Gonzales & Moraga. Le analisi numeriche sono realizzate in domini tridimensionali e bidimensionali, in quest’ultimo caso analizzando l’interazione fluido-strutturale. Nei casi tridimensionali, le arterie (simulazioni fluidodinamiche) sono infinitamente rigide: ricavato il campo di pressione si procede quindi all’analisi strutturale, per determinare le variazioni di sezione e la permanenza del disturbo sul flusso. La portata sanguigna è determinata nei casi tridimensionali con catetere individuando tre valori (massimo, minimo e medio); mentre per i casi 2D e tridimensionali con arterie stenotiche la legge di pressione riproduce l’impulso ematico. La mesh è triangolare (2D) o tetraedrica (3D), infittita alla parete ed a valle dell’ostacolo, per catturare le ricircolazioni. Alla tesi sono allegate due appendici, che studiano con codici CFD la trasmissione del calore in microcanali e l’ evaporazione di gocce d’acqua in sistemi non confinati. La fluidodinamica nei microcanali è analoga all’emodinamica nei capillari. Il metodo Euleriano-Lagrangiano (simulazioni dell’evaporazione) schematizza la natura mista del sangue. La parte inerente ai microcanali analizza il transitorio a seguito dell’applicazione di un flusso termico variabile nel tempo, variando velocità in ingresso e dimensioni del microcanale. L’indagine sull’evaporazione di gocce è un’analisi parametrica in 3D, che esamina il peso del singolo parametro (temperatura esterna, diametro iniziale, umidità relativa, velocità iniziale, coefficiente di diffusione) per individuare quello che influenza maggiormente il fenomeno.
Resumo:
The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.
Resumo:
The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.
Resumo:
In the framework of the micro-CHP (Combined Heat and Power) energy systems and the Distributed Generation (GD) concept, an Integrated Energy System (IES) able to meet the energy and thermal requirements of specific users, using different types of fuel to feed several micro-CHP energy sources, with the integration of electric generators of renewable energy sources (RES), electrical and thermal storage systems and the control system was conceived and built. A 5 kWel Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been studied. Using experimental data obtained from various measurement campaign, the electrical and CHP PEMFC system performance have been determinate. The analysis of the effect of the water management of the anodic exhaust at variable FC loads has been carried out, and the purge process programming logic was optimized, leading also to the determination of the optimal flooding times by varying the AC FC power delivered by the cell. Furthermore, the degradation mechanisms of the PEMFC system, in particular due to the flooding of the anodic side, have been assessed using an algorithm that considers the FC like a black box, and it is able to determine the amount of not-reacted H2 and, therefore, the causes which produce that. Using experimental data that cover a two-year time span, the ageing suffered by the FC system has been tested and analyzed.