6 resultados para Method of quantification
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
In the framework of a global transition to a low-carbon energy mix, the interest in advanced nuclear Small Modular Reactors (SMRs) has been growing at the international level. Due to the high level of maturity reached by Severe Accident Codes for currently operating rectors, their applicability to advanced SMRs is starting to be studied. Within the present work of thesis and in the framework of a collaboration between ENEA, UNIBO and IRSN, an ASTEC code model of a generic IRIS reactor has been developed. The simulation of a DBA sequence involving the operation of all the passive safety systems of the generic IRIS has been carried out to investigate the code model capability in the prediction of the thermal-hydraulics characterizing an integral SMR adopting a passive mitigation strategy. The following simulation of 4 BDBAs sequences explores the applicability of Severe Accident Codes to advance SMRs in beyond-design and core-degradation conditions. The uncertainty affecting a code simulation can be estimated by using the method of Input Uncertainty Propagation, whose application has been realized through the RAVEN-ASTEC coupling and implementation on an HPC platform. This probabilistic methodology has been employed in a study of the uncertainty affecting the passive safety system operation in the DBA simulation of ASTEC, providing a further characterization of the thermal-hydraulics of this sequence. The application of the Uncertainty Quantification method to early core-melt phenomena has been investigated in the framework of a BEPU analysis of the ASTEC simulation of the QUENCH test-6 experiment. A possible solution to the encountered challenges has been proposed through the application of a Limit Surface search algorithm.
Resumo:
The limb amputation is one of the oldest surgical procedures performed and it still represents an event that drastically changes the life of an individual. Despite the technological progress, the difficulties related to the realization and daily use of the socket remain very common. Among the different technologies adopted in the prosthetic field, this project focused on the osseointegration technique. This technique consists in implanting a stem within the medullary canal of the amputated skeletal segment that extends outside the amputation stump with a prosthesis, later connected to the metal extension. The objective of this PhD project is to treat and to evaluate selected patients with osseointegrated prosthetic implants for the treatment of lower limb amputations. Patients are recruited at the Rizzoli Orthopaedic Institute and at the Prosthesis - INAIL center of Vigorso (Budrio) during outpatient visits, while the surgical procedure is performed by the same expert surgeon in the II Orthopaedic and Traumatology Clinic of the Rizzoli Orthopaedic Institute. The project is still ongoing, to date three patients had completed both procedures, but due to various personal problems, just one of them is included in the analysis. This patient increased his percentage of prosthesis use and the level of mobility with an overall improvement of quality of live after the procedure. The osseointegration technique represents a promising alternative method of treatment for amputees who are not satisfied with their socket prosthesis. In the coming years it will continue the collection of clinical, radiographic and kinematic data of subjects undergoing this procedure in order to perform a long-term monitoring of both clinical outcomes and quality of life.
Resumo:
Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. In case of peripheral nerve injury, the first approach is primary neurorrhaphy, which is direct nerve repair with epineural microsutures of the two stumps. However, this is not feasible in case of stump retraction or in case of tissue loss (gap > 2 cm), where the main surgical options are autologous grafts, allogenic grafts, or nerve conduits. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable donor site morbidity and functional deficit. Fresh nerve allografts have therefore become a viable alternative option, but they require immunosuppression, which is often contraindicated. Acellular Nerve Allografts (ANA) represent a valid alternative, they do not need immunosuppression and appear to be safe and effective based on recent studies. The purpose of this study is to propose and develop an innovative method of nerve decellularization (Rizzoli method), conforming to cleanroom requirements in order to perform the direct tissue manipulation step and the nerve decellularization process within five hours, so as to accelerate the detachment of myelin and cellular debris, without detrimental effects on nerve architecture. In this study, the safety and the efficacy of the new method are evaluated in vitro and in vivo by histological, immunohistochemical, and histomorphometric studies in rabbits and humans. The new method is rapid, safe, and cheaper if compared with available commercial ANAs. The present study shows that the method, previously optimized in vitro and in vivo on animal model presented by our group, can be applied on human nerve samples. This work represents the first step in providing a novel, safe, and inexpensive tool for use by European tissue banks to democratize the use of nerve tissue transplantation for nerve injury reconstruction.
Resumo:
Hydrogen sulfide (H2S) is a widely recognized gasotransmitter, with key roles in physiological and pathological processes. The accurate quantification of H2S and reactive sulfur species (RSS) may hold important implications for the diagnosis and prognosis of various diseases. However, H2S species quantification in biological matrices is still a challenge. Among the sulfide detection methods, monobromobimane (MBB) derivatization coupled with reversed phase high-performance liquid chromatography (RP-HPLC) is one of the most reported. However, it is characterized by a complex preparation and time-consuming process, which may alter the actual H2S level. Moreover, quantitative validation has still not been described based on a survey of previously published works. In this study, we developed and validated an improved analytical protocol for the MBB RP-HPLC method. Main parameters like MBB concentration, temperature, reaction time, and sample handling were optimized, and the calibration method was further validated using leave-one-out cross-validation (CV) and tested in a clinical setting. The method shows high sensitivity and allows the quantification of H2S species, with a limit of detection (LOD) of 0.5 µM and a limit of quantification (LOQ) of 0.9 µM. Additionally, this model was successfully applied in measurements of H2S levels in the serum of patients subjected to inhalation with vapors rich in H2S. In addition, a properly procedure was established for H2S release with the modified MBB HPLC-FLD method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer Silk-Fibroin scaffolds with the combination of different H2S donor’s concentration with respect to the weight of PLGA nanofiber. In the end, some efforts were made on sulfide measurements by using size exclusion chromatography fluorescence/ultraviolet detection and inductively coupled plasma-mass spectrometry (SEC-FLD/UV-ICP/MS). It’s intended as a preliminary study in order to define the feasibility of a separation-detection-quantification platform to analyze biological samples and quantify sulfur species.
Resumo:
Thanks to the development and combination of molecular markers for the genetic traceability of sunflower varieties and a gas chromatographic method for the determination of the FAs composition of sunflower oil, it was possible to implement an experimental method for the verification of both the traceability and the variety of organic sunflower marketed by Agricola Grains S.p.A. The experimental activity focused on two objectives: the implementation of molecular markers for the routine control of raw material deliveries for oil extraction and the improvement and validation of a gas chromatographic method for the determination of the FAs composition of sunflower oil. With regard to variety verification and traceability, the marker systems evaluated were the following: SSR markers (12) arranged in two multiplex sets and SCAR markers for the verification of cytoplasmic male sterility (Pet1) and fertility. In addition, two objectives were pursued in order to enable a routine application in the industrial field: the development of a suitable protocol for DNA extraction from single seeds and the implementation of a semi-automatic capillary electrophoresis system for the analysis of marker fragments. The development and validation of a new GC/FID analytical method for the determination of fatty acids (FAME) in sunflower achenes to improve the quality and efficiency of the analytical flow in the control of raw and refined materials entering the Agricola Grains S.p.A. production chain. The analytical performances being validated by the newly implemented method are: linearity of response, limit of quantification, specificity, precision, intra-laboratory precision, robustness, BIAS. These parameters are used to compare the newly developed method with the one considered as reference - Commission Regulation No. 2568/91 and Commission Implementing Regulation No. 2015/1833. Using the combination of the analytical methods mentioned above, the documentary traceability of the product can be confirmed experimentally, providing relevant information for subsequent marketing.