6 resultados para Method of multiple scale
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Multiple Myeloma (MM) is a hematologic cancer with heterogeneous and complex genomic landscape, where Copy Number Alterations (CNAs) play a key role in the disease's pathogenesis and prognosis. It is of biological and clinical interest to study the temporal occurrence of early alterations, as they play a disease "driver" function by deregulating key tumor pathways. This study presents an innovative bioinformatic tools suite created for harmonizing and tracing the origin of CNAs throughout the evolutionary history of MM. To this aim, large cohorts of newly-diagnosed MM (NDMM, N=1582) and Smoldering-MM (SMM, N=282) were aggregated. The tools developed in this study enable the harmonization of CNAs as obtained from different genomic platforms in such a way that a high statistical power can be obtained. By doing so, the high numerosity of those cohorts was harnessed for the identification of novel genes characterized as "driver" (NFKB2, NOTCH2, MAX, EVI5 and MYC-ME2-enhancer), and the generation of an innovative timing model, implemented with a statistical method to introduce confidence intervals in the CNAs-calls. By applying this model on both NDMM and SMM cohorts, it was possible to identify specific CNAs (1q(CKS1B)amp, 13q(RB1)del, 11q(CCND1)amp and 14q(MAX)del) and categorize them as "early"/ "driver" events. A high level of precision was guaranteed by the narrow confidence intervals in the timing estimates. These CNAs were proposed as critical MM alterations, which play a foundational role in the evolutionary history of both SMM and NDMM. Finally, a multivariate survival model was able to identify the independent genomic alterations with the greatest effect on patients’ survival, including RB1-del, CKS1B-amp, MYC-amp, NOTCH2-amp and TRAF3-del/mut. In conclusion, the alterations that were identified as both "early-drivers” and correlated with patients’ survival were proposed as biomarkers that, if included in wider survival models, could provide a better disease stratification and an improved prognosis definition.
Resumo:
Resumo:
Introduction. Neutrophil Gelatinase-Associated Lipocalin (NGAL) belongs to the family of lipocalins and it is produced by several cell types, including renal tubular epithelium. In the kidney its production increases during acute damage and this is reflected by the increase in serum and urine levels. In animal studies and clinical trials, NGAL was found to be a sensitive and specific indicator of acute kidney injury (AKI). Purpose. The aim of this work was to investigate, in a prospective manner, whether urine NGAL can be used as a marker in preeclampsia, kidney transplantation, VLBI and diabetic nephropathy. Materials and methods. The study involved 44 consecutive patients who received renal transplantation; 18 women affected by preeclampsia (PE); a total of 55 infants weighing ≤1500 g and 80 patients with Type 1 diabetes. Results. A positive correlation was found between urinary NGAL and 24 hours proteinuria within the PE group. The detection of higher uNGAL values in case of severe PE, even in absence of statistical significance, confirms that these women suffer from an initial renal damage. In our population of VLBW infants, we found a positive correlation of uNGAL values at birth with differences in sCreat and eGFR values from birth to day 21, but no correlation was found between uNGAL values at birth and sCreat and eGFR at day 7. systolic an diastolic blood pressure decreased with increasing levels of uNGAL. The patients with uNGAL <25 ng/ml had significantly higher levels of systolic blood pressure compared with the patients with uNGAL >50 ng/ml ( p<0.005). Our results indicate the ability of NGAL to predict the delay in functional recovery of the graft. Conclusions. In acute renal pathology, urinary NGAL confirms to be a valuable predictive marker of the progress and status of acute injury.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
Understanding the biology of Multiple Myeloma (MM) is of primary importance in the struggle to achieve a cure for this yet incurable neoplasm. A better knowledge of the mechanism underlying the development of MM can guide us in the development of new treatment strategies. Studies both on solid and haematological tumours have shown that cancer comprises a collection of related but subtly different clones, a feature that has been termed “intra-clonal heterogeneity”. This intra-clonal heterogeneity is likely, from a “Darwinian” natural selection perspective, to be the essential substrate for cancer evolution, disease progression and relapse. In this context the critical mechanism for tumour progression is competition between individual clones (and cancer stem cells) for the same microenvironmental “niche”, combined with the process of adaptation and natural selection. The Darwinian behavioural characteristics of cancer stem cells are applicable to MM. The knowledge that intra-clonal heterogeneity is an important feature of tumours’ biology has changed our way to addressing cancer, now considered as a composite mixture of clones and not as a linear evolving disease. In this variable therapeutic landscape it is important for clinicians and researchers to consider the impact that evolutionary biology and intra-clonal heterogeneity have on the treatment of myeloma and the emergence of treatment resistance. It is clear that if we want to effectively cure myeloma it is of primarily importance to understand disease biology and evolution. Only by doing so will we be able to effectively use all of the new tools we have at our disposal to cure myeloma and to use treatment in the most effective way possible. The aim of the present research project was to investigate at different levels the presence of intra-clonal heterogeneity in MM patients, and to evaluate the impact of treatment on clonal evolution and on patients’ outcomes.
Resumo:
Natural systems face pressures exerted by natural physical-chemical forcings and a myriad of co-occurring human stressors that may interact to cause larger than expected effects, thereby presenting a challenge to ecosystem management. This thesis aimed to develop new information that can contribute to reduce the existing knowledge gaps hampering the holistic management of multiple stressors. I undertook a review of the state-of-the-art methods to detect, quantify and predict stressor interactions, identifying techniques that could be applied in this thesis research. Then, I conducted a systematic review of saltmarsh multiple stressor studies in conjunction with a multiple stressor mapping exercise for the study system in order to infer potential important synergistic stressor interactions. This analysis identified key stressors that are affecting the study system, but also pointed to data gaps in terms of driver and pressure data and raised issues for potentially overlooked stressors. Using field mesocosms, I explored how a local stressor (nutrient availability) affects the responses of saltmarsh vegetation to a global stressor (increased inundation) in different soil types. Results indicate that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. In another field experiment, I examined the challenges of managing co-occurring and potentially interacting local stressors on saltmarsh vegetation: recreational trampling and smothering by deposition of excess macroalgal wrack due to high nutrient loads. Trampling and wrack prevention had interacting effects, causing non-linear responses of the vegetation to simulated management of these stressors, such that vegetation recovered only in those treatments simulating the combined prevention of both stressors. During this research I detected, using molecular genetic methods, a widespread presence of S. anglica (and to a lesser extent S. townsendii), two previously unrecorded non-native Spartinas in the study areas.