3 resultados para Mesoscopic superconductors
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present PhD thesis summarizes two examples of research in microfluidics. Both times water was the subject of interest, once in the liquid state (droplets adsorbed on chemically functionalized surfaces), the other time in the solid state (ice snowflakes and their fractal behaviour). The first problem deals with a slipping nano-droplet of water adsorbed on a surface with photo-switchable wettability characteristics. Main focus was on identifying the underlying driving forces and mechanical principles at the molecular level of detail. Molecular Dynamics simulation was employed as investigative tool owing to its record of successfully describing the microscopic behaviour of liquids at interfaces. To reproduce the specialized surface on which a water droplet can effectively “walk”, a new implicit surface potential was developed. Applying this new method the experimentally observed droplet slippage could be reproduced successfully. Next the movement of the droplet was analyzed at various conditions emphasizing on the behaviour of the water molecules in contact with the surface. The main objective was to identify driving forces and molecular mechanisms underlying the slippage process. The second part of this thesis is concerned with theoretical studies of snowflake melting. In the present work snowflakes are represented by filled von Koch-like fractals of mesoscopic beads. A new algorithm has been developed from scratch to simulate the thermal collapse of fractal structures based on Monte Carlo and Random Walk Simulations (MCRWS). The developed method was applied and compared to Molecular Dynamics simulations regarding the melting of ice snowflake crystals and new parameters were derived from this comparison. Bigger snow-fractals were then studied looking at the time evolution at different temperatures again making use of the developed MCRWS method. This was accompanied by an in-depth analysis of fractal properties (border length and gyration radius) in order to shed light on the dynamics of the melting process.
Resumo:
In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.
Resumo:
Superconduttori bulk in MgB2, ottenuti con tecnologia Mg-RLI brevettata da Edison Spa, sono stati oggetto di un'approfondita analisi in termini di forze di levitazione. Questo studio è stato preliminare per la progettazione di un innovativo sistema di levitazione lineare. I risultati ottenuti sperimentalmente sono stati validati attraverso modelli numerici sviluppati ad hoc. I campioni oggetto dello studio sono tre bulk in MgB2 rappresentativi delle tipiche forme usate nelle applicazioni reali: un disco, un cilindro, una piastra. I bulk sono stati misurati con un sistema di misura per le forze di levitazione realizzato a tale scopo. Un protocollo sperimentale è stato seguito per la caratterizzazione di base, sia in condizioni Field Cooling sia Zero Field Cooling, al quale sono state affiancate prove specifiche come la possibilità di mantenere inalterate le proprietà superconduttive attraverso la giunzione di più campioni con la tecnologia Mg-RLI. Un modello numerico è stato sviluppato per convalidare i risultati sperimentali e per studiare l'elettrodinamica della levitazione. Diverse configurazioni di rotori magnetici sono state accoppiate con un cilindro in MgB2 con lo scopo di valutare la soluzione ottimale; questo tema è stato apporofondito attraverso lo sviluppo di un software di simulazione che può tenere conto sia del numero di magneti sia della presenza di anelli in materiale magneti intercalati fra di essi. Studi analoghi sono stati portati avanti su una piastra di MgB2 per simulare il comportamento di una geometria piana. Un sistema di raffreddamento innovativo basato sull'azoto solido è stato studiato per poterlo accoppiare con un sistema di levitazione. Il criostato progettato è costituito da due dewar, uno dentro l'altro; quello interno ha lo scopo di raffreddare l'MgB2 mentre quello esterno di limitare delle perdite verso l'esterno. Il criopattino così ottenuto è accoppiato in condizioni FC ad una rotaia formata da magneti permanenti in NdFeB.