10 resultados para Mesoporous Metal-oxides

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV (Spain). This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). These materials have been little explored as catalysts, although they have a great potential as multifunctional materials. Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by isomorphous substitution of tungsten atoms with other transition metals such as vanadium, niobium and molybdenum. In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by hydrothermal synthesis; these mixed-oxide were fully characterize by a number of physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical route to solve the important issue related to the co-production of glycerin along the biodiesel production chain. Acrylic acid yields as high as 51% were obtained and important structure-reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid and redox properties as well as the in-framework presence of vanadium are fundamental to achieve noteworthy yields into the acid monomer. The overall results reported herein might represent an important contribution for future applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for their physicochemical characterization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite porcelain enamels are inorganic coatings for metallic components based on a special ceramic-vitreous matrix in which specific additives are randomly dispersed. The ceramic-vitreous matrix is made by a mixture of various raw materials and elements and in particular it is based on boron-silicate glass added with metal oxides(1) of titanium, zinc, tin, zirconia, alumina, ecc. These additions are often used to improve and enhance some important performances such as corrosion(2) and wear resistance, mechanical strength, fracture toughness and also aesthetic functions. The coating process, called enamelling, depends on the nature of the surface, but also on the kind of the used porcelain enamel. For metal sheets coatings two industrial processes are actually used: one based on a wet porcelain enamel and another based on a dry-silicone porcelain enamel. During the firing process, that is performed at about 870°C in the case of a steel substrate, the enamel raw material melts and interacts with the metal substrate so enabling the formation of a continuous varying structure. The interface domain between the substrate and the external layer is made of a complex material system where the ceramic vitreous and the metal constituents are mixed. In particular four main regions can be identified, (i) the pure metal region, (ii) the region where the metal constituents are dominant compared with the ceramic vitreous components, (iii) the region where the ceramic vitreous constituents are dominant compared with the metal ones, and the fourth region (iv) composed by the pure ceramic vitreous material. It has also to be noticed the presence of metallic dendrites that hinder the substrate and the external layer passing through the interphase region. Each region of the final composite structure plays a specific role: the metal substrate has mainly the structural function, the interphase region and the embedded dendrites guarantee the adhesion of the external vitreous layer to the substrate and the external vitreous layer is characterized by an high tribological, corrosion and thermal shock resistance. Such material, due to its internal composition, functionalization and architecture can be considered as a functionally graded composite material. The knowledge of the mechanical, tribological and chemical behavior of such composites is not well established and the research is still in progress. In particular the mechanical performances data about the composite coating are not jet established. In the present work the Residual Stresses, the Young modulus and the First Crack Failure of the composite porcelain enamel coating are studied. Due to the differences of the porcelain composite enamel and steel thermal properties the enamelled steel sheets have residual stresses: compressive residual stress acts on the coating and tensile residual stress acts on the steel sheet. The residual stresses estimation has been performed by measuring the curvature of rectangular one-side coated specimens. The Young modulus and the First Crack Failure (FCF) of the coating have been estimated by four point bending tests (3-7) monitored by means of the Acoustic Emission (AE) technique(5,6). In particular the AE information has been used to identify, during the bending tests, the displacement domain over which no coating failure occurs (Free Failure Zone, FFZ). In the FFZ domain, the Young modulus has been estimated according to ASTM D6272-02. The FCF has been calculated as the ratio between the displacement at the first crack of the coating and the coating thickness on the cracked side. The mechanical performances of the tested coated specimens have also been related and discussed to respective microstructure and surface characteristics by double entry charts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with the transformation of ethanol into acetonitrile. Two approaches are investigated: (a) the ammoxidation of ethanol to acetonitrile and (b) the amination of ethanol to acetonitrile. The reaction of ethanol ammoxidation to acetonitrile has been studied using several catalytic systems, such as vanadyl pyrophosphate, supported vanadium oxide, multimetal molibdates and antimonates. The main conclusions are: (I) The surface acidity must be very low, because acidity catalyzes several undesired reactions, such as the formation of ethylene, and of heavy compounds as well. (II) Supported vanadium oxide is the catalyst showing the best catalytic behaviour, but the role of the support is of crucial importance. (III) Both metal molybdates and antimonates show interesting catalytic behaviour, but are poorly active, and probably require harder conditions than those used with the V oxide-based catalysts. (IV) One key point in the reaction network is the rate of reaction between acetaldehyde (the first intermediate) and ammonia, compared to the parallel rates of acetaldehyde transformation into by-products (CO, CO2, HCN, heavy compounds). Concerning the non-oxidative process, two possible strategies are investigated: (a) the ethanol ammonolysis to ethylamine coupled with ethylamine dehydrogenation, and (b) the direct non-reductive amination of ethanol to acetonitrile. Despite the good results obtained in each single step, the former reaction does not lead to good results in terms of yield to acetonitrile. The direct amination can be catalyzed with good acetonitrile yield over catalyst based on supported metal oxides. Strategies aimed at limiting catalyst deactivation have also been investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first is the increase of LIBs working voltage by using high-voltage cathode materials. The second is the increase of battery capacity by the development of a cell chemistry where oxygen redox reaction (ORR) occurs at the cathode and metal lithium is the anode (Li/O2 battery). This PhD work is focused on the development of high-voltage safe cathodes for LIBs, and on the investigation of the feasibility of Li/O2 battery operating with ionic liquid(IL)-based electrolytes. The use of LiMn1-xFexPO4 as high-voltage cathode material is discussed. Synthesis and electrochemical tests of three different phosphates, more safe cathode materials than transition metal oxides, are reported. The feasibility of Li/O2 battery operating in IL-based electrolytes is also discussed. Three aspects have been investigated: basic aspects of ORR, synthesis and characterization of porous carbons as positive electrode materials and study of limiting factors to the electrode capacity and cycle-life. Regarding LIBs, the findings on LiMnPO4 prepared by soluble precursors demonstrate that a good performing Mn-based olivine is viable without the coexistence of iron. Regarding Li/O2 battery, the oxygen diffusion coefficient and concentration values in different ILs were obtained. This work highlighted that the O2 mass transport limits the Li/O2 capacity at high currents; it gave indications on how to increase battery capacity by using a flow-cell and a porous carbon as cathode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research activity was focused on the transformation of methyl propionate (MP) into methyl methacrylate (MMA), avoiding the use of formaldehyde (FAL) thanks to a one-pot strategy involving in situ methanol (MeOH) dehydrogenation over the same catalytic bed were the hydroxy-methylation/dehydration of MP with FAL occurs. The relevance of such research line is related to the availability of cheap renewable bio-glycerol from biodiesel production, from which MP can be obtained via a series of simple catalytic reactions. Moreover, the conventional MMA synthesis (Lucite process) suffers from safety issues related to the direct use of carcinogenic FAL and depends on non-renewable MP. During preliminary studies, ketonization of carboxylic acids and esters has been recognized as a detrimental reaction which hinders the selective synthesis of MMA at low temperature, together with H-transfer hydrogenation with FAL or MeOH as the H-donor at higher temperatures. Therefore, ketonization of propionic acid (PA) and MP was investigated over several catalysts (metal oxides and metal phosphates), to obtain a better understanding of the structure-activity relationship governing the reaction and to design a catalyst for MMA synthesis capable to promote the desired reaction while minimizing ketonization and H-transfer. However, ketonization possesses scientific and industrial value itself and represents a strategy for the upgrade of bio oils from fast pyrolysis of lignocellulosic materials, a robust and versatile technology capable to transform the most abundant biomass into liquid biofuels. The catalysts screening showed that ZrO2 and La2O3 are the best catalysts, while MgO possesses low ketonization activity, but still, H-transfer parasitic hydrogenation of MMA reduces its yield over all catalysts. Such study resulted in the design of Mg/Ga mixed oxides that showed enhanced dehydrogenating activity towards MeOH at low temperatures. It was found that the introduction of Ga not only minimize ketonization, but also modulates catalyst basicity reducing H-transfer hydrogenations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrocatalytic reduction of CO2 (CO2RR) is a captivating strategy for the conversion of CO2 into fuels, to realize a carbon neutral circular economy. In the recent years, research has focused on the development of new materials and technology capable of capturing and converting CO2 into useful products. The main problem of CO2RR is given by its poor selectivity, which can lead to the formation of numerous reaction products, to the detriment of efficiencies. For this reason, the design of new electrocatalysts that selectively and efficiently reduce CO2 is a fundamental step for the future exploitation of this technology. Here we present a new class of electrocatalysts, designed with a modular approach, namely, deriving from the combination of different building blocks in a single nanostructure. With this approach it is possible to obtain materials with an innovative design and new functionalities, where the interconnections between the various components are essential to obtain a highly selective and efficient reduction of CO2, thus opening up new possibilities in the design of optimized electrocatalytic materials. By combining the unique physic-chemical properties of carbon nanostructures (CNS) with nanocrystalline metal oxides (MO), we were able to modulate the selectivity of CO2RR, with the production of formic acid and syngas at low overpotentials. The CNS have not only the task of stabilizing the MO nanoparticles, but the creation of an optimal interface between two nanostructures is able to improve the catalytic activity of the active phase of the material. While the presence of oxygen atoms in the MO creates defects that accelerate the reaction kinetics and stabilize certain reaction intermediates, selecting the reaction pathway. Finally, a part was dedicated to the study of the experimental parameters influencing the CO2RR, with the aim of improving the experimental setup in order to obtain commercial catalytic performances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

My Ph.D. thesis was dedicated to the exploration of different paths to convert sunlight into the shape of chemical bonds, by the formation of solar fuels. During the past three years, I have focused my research on two of these, namely molecular hydrogen H2 and the reduced nicotinamide adenine dinucleotide enzyme cofactor NAD(P)H. The first could become the ideal energy carrier for a truly clean energy system; it currently represents the best chance to liberate humanity from its dependence on fossil fuels. To address this, I studied different systems which can achieve proton reduction upon light absorption. More specifically, part of my work was aimed to the development of a cost-effective and stable catalyst in combination with a well-known photochemical cycle. To this extent, I worked on transition metal oxides which, as demonstrated in this work, have been identified as promising H2 evolution catalysts, showing excellent activity, stability, and previously unreported versatility. Another branch of my work on hydrogen production dealt with the use of a new class of polymeric semiconductor materials to absorb light and convert it into H2. The second solar fuel mentioned above is a key component of the most powerful methods for chemical synthesis: enzyme catalysis. The high cost of the reduced forms prohibits large-scale utilization, so artificial photosynthetic approaches for regenerating it are being intensively studied. The first system I developed exploits the tremendous reducing properties of a scarcely known ruthenium complex which is able to reduce NAD+. Lastly, I sought to revert the classical role of the sacrificial electron donor to an active component of the system and, to boost the process, I build up an autonomous microfluidic system able to generate highly reproducible NAD(P)H amount, demonstrating the superior performance of microfluidic reactors over batch and representing another successful photochemical NAD(P)H regeneration system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the hydrodechlorination of CF3OCFClCF2Cl to produce unsaturated CF3OCF=CF2 was studied over a series of supported metal catalysts. Currently this molecule is produced from the precursor CF3OCFClCF2Cl by dechlorination with zinc powder. An important cost on the economic and environmental balance is represents by the large amount of ZnCl2 produced and to be disposed of. A new approach, based on gas-phase hydrodechlorination over supported catalysts can lead to a new sustainable process. During the feasibility step of this project, substantially two kind of materials were studied: metals supported over activated carbon and Pd/Cu species supported over MCM-41 mesoporous silica. Observed catalytic performances were strongly dependent on the metal and support used. All carbon-supported Ru, Pd, and bimetallic catalysts are fairly active and yielded the target product CF3OCF=CF2, the higher selectivity being obtained with ruthenium- and palladium-based materials. Nevertheless, Ru-based catalysts showed poor stability and this deactivation may be attributed to the deposition of chlorinated organic species blocking the active sites. On the other hand, palladium-containing catalysts showed high stability. Ru/Pd and Pd/Cu bimetallic catalysts exhibited long-term selectivity and stability, highlighting the possibility for these materials to be employed in the CF3OCF=CF2 production process. During the second part of this thesis, a series of bimetallic meso-structured Pd/Cu MCM-41 catalysts were studies to overcome possible mass transfer limitations. The materials were obtained by different synthesis methods. The incorporation of Pd and Cu during MCM-41 synthesis, did not destroy the typical hexagonal array and ordered pore system of MCM-41. However, the calcination for the removal of the template provoked significant segregation of oxides. The impregnation leads to pore-occlusion and formation of Cu particles and large bimetallic PdCu species. Larger metal particles leads to lower CF3OCFClCF2Cl conversion, while the monometallic particles can decrease the selectivity to CF3OCF=CF2, fostering the dehalogenation to CF3OCH=CF2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.