6 resultados para Meson
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis we present a study of the D0 meson (through one of its two-body decay channel, D0 → Kπ) collected by the CDF II experiment at the Tevatron pp ̄ collider at Fermilab. In particular we measured the differential production cross section as a function of the transverse momentum down to pT = 1.5 GeV/c.
Resumo:
Ultra-relativistic heavy ions generate strong electromagnetic fields which offer the possibility to study γ-γ and γ-nucleus processes at the LHC in the so called ultra-peripheral collisions (UPC). The photoproduction of J/ψ vector mesons in UPC is sensitive to the gluon distribution of the interacting nuclei. In this thesis the study of coherent and incoherent J/ψ production in Pb-Pb collisions at √sNN = 2.76 TeV is described. The J/ψ has been measured via its leptonic decay in the rapidity range -0.9 < y < 0.9. The cross section for coherent and incoherent J/ψ are given. The results are compared to theoretical models for J/ψ production and the coherent cross section is found to be in good agreement with those models which include nuclear gluon shadowing consistent with EPS09 parametrization. In addition the cross section for the process γ γ→ e+e− has been measured and found to be in agreement with the STARLIGHT Monte Carlo predictions. The analysis has been published by the ALICE Collaboration in the European Physical Journal C, with one of its main plot depicted on the cover-front of the November 2013 issue.
Resumo:
A search for time-integrated violation of the CP symmetry, ACP(K−K+), in the Cabibbo-suppressed D0 → K−K+ decays is performed at the LHCb detector using proton- proton collisions recorded from 2015 to 2018 at the centre of mass energy of 13 TeV. The data used corresponds to an integrated luminosity of 5.7 fb−1. The flavour of the charm mesons is defined from the charge of the pion in D∗+ → D0π+ and D∗− → D0π− decays. Nuisance asymmetries are constrained from D∗+ → D0(→ K−π+)π+, D+ → KS0π+, D+ → K−π+π+, Ds+ → KS0K+ and Ds+ → φπ+ decays. The ACP(K−K+) asymme- try is measured to be ACP (K−K+) = (6.8 ± 5.4 (stat) ± 1.6 (syst)) · 10−4, in agreement with the previous LHCb results and the current world average. This represents the world’s most precise measurement of this quantity to date. Combining ACP (K−K+) with the time-integrated CP asymmetry difference, ∆ACP = ACP (K−K+)− ACP (π−π+), and the time-dependent CP asymmetry, ∆Y , measured with D0 → K−K+ and D0 → π−π+ decays, the direct CP asymmetries in D0 → K−K+ and D0 → π−π+ decays, adKK and adππ, result to be adKK =(7.7±5.7)·10−4, adππ =(23.2±6.1)·10−4, where the errors include systematic and statistical uncertainties and the correlation be- tween the two values is ρ(adKK,adππ) = 0.88. The values differ from zero for 1.4 and 3.8 standard deviations, respectively. In particular, adππ shows an evidence for direct CP violation in D0 → π−π+ decays.
Resumo:
The production rate of $b$ and $\bar{b}$ hadrons in $pp$ collisions are not expected to be strictly identical, due to imbalance between quarks and anti-quarks in the initial state. This phenomenon can be naively related to the fact that the $\bar{b}$ quark produced in the hard scattering might combine with a $u$ or $d$ valence quark from the colliding protons, whereas the same cannot happen for a $b$ quark. This thesis presents the analysis performed to determine the production asymmetries of $B^0$ and $B^0_s$. The analysis relies on data samples collected by the LHCb detector at the Large Hadron Collider (LHC) during the 2011 and 2012 data takings at two different values of the centre of mass energy $\sqrt{s}=7$ TeV and at $\sqrt{s}=8$ TeV, corresponding respectively to an integrated luminosity of 1 fb$^{-1}$ and of 2 fb$^{-1}$. The production asymmetry is one of the key ingredients to perform measurements of $CP$ violation in b-hadron decays at the LHC, since $CP$ asymmetries must be disentangled from other sources. The measurements of the production asymmetries are performed in bins of $p_\mathrm{T}$ and $\eta$ of the $B$-meson. The values of the production asymmetries, integrated in the ranges $4 < p_\mathrm{T} < 30$ GeV/c and $2.5<\eta<4.5$, are determined to be: \begin{equation} A_\mathrm{P}(\B^0)= (-1.00\pm0.48\pm0.29)\%,\nonumber \end{equation} \begin{equation} A_\mathrm{P}(\B^0_s)= (\phantom{-}1.09\pm2.61\pm0.61)\%,\nonumber \end{equation} where the first uncertainty is statistical and the second is systematic. The measurement of $A_\mathrm{P}(B^0)$ is performed using the full statistics collected by LHCb so far, corresponding to an integrated luminosity of 3 fb$^{-1}$, while the measurement of $A_\mathrm{P}(B^0_s)$ is realized with the first 1 fb$^{-1}$, leaving room for improvement. No clear evidence of dependences on the values of $p_\mathrm{T}$ and $\eta$ is observed. The results presented in this thesis are the most precise measurements available up to date.
Resumo:
The time-dependent CP asymmetries of the $B^0\to\pi^+\pi^-$ and $B^0_s\toK^+K^-$ decays and the time-integrated CP asymmetries of the $B^0\toK^+\pi^-$ and $B^0_s\to\pi^+K^-$ decays are measured, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run2. The results are compatible with previous determinations of these quantities from LHCb, except for the CP-violation parameters of the $B^0_s\to K^+K^-$ decays, that show a discrepancy exceeding 3 standard deviations between different data-taking periods. The investigations being conducted to understand the discrepancy are documented. The measurement of the CKM matrix element $|V_{cb}|$ using $B^0_{s}\to D^{(*)-}_s\mu^+ \nu_\mu$ is also reported, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run1. The measurement leads to $|V_{cb}| = (41.4\pm0.6\pm0.9\pm1.2)\times 10^{-3}$, where the first uncertainty is statistical, the second is systematic, and the third is due to external inputs. This measurement is compatible with the world averages and constitutes the first measurement of $|V_{cb}|$ at a hadron collider and the absolute first one with decays of the $B^0_s$ meson. The analysis also provides the very first measurements of the branching ratio and form factors parameters of the signal decay modes. The study of the characteristics ruling the response of an electromagnetic calorimeter (ECAL) to profitably operate in the high luminosity regime foreseen for the Upgrade2 of LHCb is reported in the final part of this Thesis. A fast and flexible simulation framework is developed to this purpose. Physics performance of different configurations of the ECAL are evaluated using samples of fully simulated $B^0\to \pi^+\pi^-\pi^0$ and $B^0\to K^{*0}e^+e^-$ decays. The results are used to guide the development of the future ECAL and are reported in the Framework Technical Design Report of the LHCb Upgrade2 detector.
Resumo:
This thesis presents a search for a sterile right-handed neutrino $N$ produced in $D_s$ meson decays, using proton-proton collisions collected by the CMS experiment at the LHC. The data set used for the analysis, the B-Parking data set, corresponds to an integrated luminosity of $41.7\,\textrm{fb}^{-1}$ and was collected during the 2018 data-taking period. The analysis is targeting the $D_s^+\rightarrow N(\rightarrow\mu^{\pm}\pi^{\mp})\mu^{+}$ decays, where the final state muons can have the same electric charge allowing for a lepton flavor violating decay. To separate signal from background, a cut-based analysis is optimized using requirements on the sterile neutrino vertex displacement, muon and pion impact parameter, and impact parameter significance. The expected limit on the active-sterile neutrino mixing matrix parameter $|V_{\mu}|^2$ is extracted by performing a fit of the $\mu\pi$ invariant mass spectrum for two sterile neutrino mass hypotheses, 1.0 and 1.5 GeV. The analysis is currently blinded, following the internal CMS review process. The expected limit ranges between approximately $10^{-4}$ for a 1.0 GeV neutrino to $7\times10^{-5}$ for a 1.5 GeV neutrino. This is competitive with the best existing results from collider experiments over the same mass range.