3 resultados para Mental representations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The body is represented in the brain at levels that incorporate multisensory information. This thesis focused on interactions between vision and cutaneous sensations (i.e., touch and pain). Experiment 1 revealed that there are partially dissociable pathways for visual enhancement of touch (VET) depending upon whether one sees one’s own body or the body of another person. This indicates that VET, a seeming low-level effect on spatial tactile acuity, is actually sensitive to body identity. Experiments 2-4 explored the effect of viewing one’s own body on pain perception. They demonstrated that viewing the body biases pain intensity judgments irrespective of actual stimulus intensity, and, more importantly, reduces the discriminative capacities of the nociceptive pathway encoding noxious stimulus intensity. The latter effect only occurs if the pain-inducing event itself is not visible, suggesting that viewing the body alone and viewing a stimulus event on the body have distinct effects on cutaneous sensations. Experiment 5 replicated an enhancement of visual remapping of touch (VRT) when viewing fearful human faces being touched, and further demonstrated that VRT does not occur for observed touch on non-human faces, even fearful ones. This suggests that the facial expressions of non-human animals may not be simulated within the somatosensory system of the human observer in the same way that the facial expressions of other humans are. Finally, Experiment 6 examined the enfacement illusion, in which synchronous visuo-tactile inputs cause another’s face to be assimilated into the mental self-face representation. The strength of enfacement was not affected by the other’s facial expression, supporting an asymmetric relationship between processing of facial identity and facial expressions. Together, these studies indicate that multisensory representations of the body in the brain link low-level perceptual processes with the perception of emotional cues and body/face identity, and interact in complex ways depending upon contextual factors.
Resumo:
The humans process the numbers in a similar way to animals. There are countless studies in which similar performance between animals and humans (adults and/or children) are reported. Three models have been developed to explain the cognitive mechanisms underlying the number processing. The triple-code model (Dehaene, 1992) posits an mental number line as preferred way to represent magnitude. The mental number line has three particular effects: the distance, the magnitude and the SNARC effects. The SNARC effect shows a spatial association between number and space representations. In other words, the small numbers are related to left space while large numbers are related to right space. Recently a vertical SNARC effect has been found (Ito & Hatta, 2004; Schwarz & Keus, 2004), reflecting a space-related bottom-to-up representation of numbers. The magnitude representations horizontally and vertically could influence the subject performance in explicit and implicit digit tasks. The goal of this research project aimed to investigate the spatial components of number representation using different experimental designs and tasks. The experiment 1 focused on horizontal and vertical number representations in a within- and between-subjects designs in a parity and magnitude comparative tasks, presenting positive or negative Arabic digits (1-9 without 5). The experiment 1A replied the SNARC and distance effects in both spatial arrangements. The experiment 1B showed an horizontal reversed SNARC effect in both tasks while a vertical reversed SNARC effect was found only in comparative task. In the experiment 1C two groups of subjects performed both tasks in two different instruction-responding hand assignments with positive numbers. The results did not show any significant differences between two assignments, even if the vertical number line seemed to be more flexible respect to horizontal one. On the whole the experiment 1 seemed to demonstrate a contextual (i.e. task set) influences of the nature of the SNARC effect. The experiment 2 focused on the effect of horizontal and vertical number representations on spatial biases in a paper-and-pencil bisecting tasks. In the experiment 2A the participants were requested to bisect physical and number (2 or 9) lines horizontally and vertically. The findings demonstrated that digit 9 strings tended to generate a more rightward bias comparing with digit 2 strings horizontally. However in vertical condition the digit 2 strings generated a more upperward bias respect to digit 9 strings, suggesting a top-to-bottom number line. In the experiment 2B the participants were asked to bisect lines flanked by numbers (i.e. 1 or 7) in four spatial arrangements: horizontal, vertical, right-diagonal and left-diagonal lines. Four number conditions were created according to congruent or incongruent number line representation: 1-1, 1-7, 7-1 and 7-7. The main results showed a more reliable rightward bias in horizontal congruent condition (1-7) respect to incongruent condition (7-1). Vertically the incongruent condition (1-7) determined a significant bias towards bottom side of line respect to congruent condition (7-1). The experiment 2 suggested a more rigid horizontal number line while in vertical condition the number representation could be more flexible. In the experiment 3 we adopted the materials of experiment 2B in order to find a number line effect on temporal (motor) performance. The participants were presented horizontal, vertical, rightdiagonal and left-diagonal lines flanked by the same digits (i.e. 1-1 or 7-7) or by different digits (i.e. 1-7 or 7-1). The digits were spatially congruent or incongruent with their respective hypothesized mental representations. Participants were instructed to touch the lines either close to the large digit, or close to the small digit, or to bisected the lines. Number processing influenced movement execution more than movement planning. Number congruency influenced spatial biases mostly along the horizontal but also along the vertical dimension. These results support a two-dimensional magnitude representation. Finally, the experiment 4 addressed the visuo-spatial manipulation of number representations for accessing and retrieval arithmetic facts. The participants were requested to perform a number-matching and an addition verification tasks. The findings showed an interference effect between sum-nodes and neutral-nodes only with an horizontal presentation of digit-cues, in number-matching tasks. In the addition verification task, the performance was similar for horizontal and vertical presentations of arithmetic problems. In conclusion the data seemed to show an automatic activation of horizontal number line also used to retrieval arithmetic facts. The horizontal number line seemed to be more rigid and the preferred way to order number from left-to-right. A possible explanation could be the left-to-right direction for reading and writing. The vertical number line seemed to be more flexible and more dependent from the tasks, reflecting perhaps several example in the environment representing numbers either from bottom-to-top or from top-to-bottom. However the bottom-to-top number line seemed to be activated by explicit task demands.
Resumo:
Recognizing one’s body as separate from the external world plays a crucial role in detecting external events, and thus in planning adequate reactions to them. In addition, recognizing one’s body as distinct from others’ bodies allows remapping the experiences of others onto one’s sensory system, providing improved social understanding. In line with these assumptions, two well-known multisensory mechanisms demonstrated modulations of somatosensation when viewing both one’s own and someone else’s body: the Visual Enhancement of Touch (VET) and the Visual Remapping of Touch (VRT) effects. Vision of the body, in the former, and vision of the body being touched, in the latter, enhance tactile processing. The present dissertation investigated the multisensory nature of these mechanisms and their neural bases. Further experiments compared these effects for viewing one’s own body or viewing another person’s body. These experiments showed important differences in multisensory processing for one’s own body, and for other bodies, and also highlighted interactions between VET and VRT effects. The present experimental evidence demonstrated that a multisensory representation of one’s body – underlie by a high order fronto-parietal network - sends rapid modulatory feedback to primary somatosensory cortex, thus functionally enhancing tactile processing. These effects were highly spatially-specific, and depended on current body position. In contrast, vision of another person’s body can drive mental representations able to modulate tactile perception without any spatial constraint. Finally, these modulatory effects seem sometimes to interact with high order information, such as emotional content of a face. This allows one’s somatosensory system to adequately modulate perception of external events on the body surface, as a function of its interaction with the emotional state expressed by another individual.