8 resultados para Memorandum of Understanding
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This Ph.D. candidate thesis collects the research work I conducted under the supervision of Prof.Bruno Samor´ı in 2005,2006 and 2007. Some parts of this work included in the Part III have been begun by myself during my undergraduate thesis in the same laboratory and then completed during the initial part of my Ph.D. thesis: the whole results have been included for the sake of understanding and completeness. During my graduate studies I worked on two very different protein systems. The theorical trait d’union between these studies, at the biological level, is the acknowledgement that protein biophysical and structural studies must, in many cases, take into account the dynamical states of protein conformational equilibria and of local physico-chemical conditions where the system studied actually performs its function. This is introducted in the introductory part in Chapter 2. Two different examples of this are presented: the structural significance deriving from the action of mechanical forces in vivo (Chapter 3) and the complexity of conformational equilibria in intrinsically unstructured proteins and amyloid formation (Chapter 4). My experimental work investigated both these examples by using in both cases the single molecule force spectroscopy technique (described in Chapter 5 and Chapter 6). The work conducted on angiostatin focused on the characterization of the relationships between the mechanochemical properties and the mechanism of action of the angiostatin protein, and most importantly their intertwining with the further layer of complexity due to disulfide redox equilibria (Part III). These studies were accompanied concurrently by the elaboration of a theorical model for a novel signalling pathway that may be relevant in the extracellular space, detailed in Chapter 7.2. The work conducted on -synuclein (Part IV) instead brought a whole new twist to the single molecule force spectroscopy methodology, applying it as a structural technique to elucidate the conformational equilibria present in intrinsically unstructured proteins. These equilibria are of utmost interest from a biophysical point of view, but most importantly because of their direct relationship with amyloid aggregation and, consequently, the aetiology of relevant pathologies like Parkinson’s disease. The work characterized, for the first time, conformational equilibria in an intrinsically unstructured protein at the single molecule level and, again for the first time, identified a monomeric folded conformation that is correlated with conditions leading to -synuclein and, ultimately, Parkinson’s disease. Also, during the research work, I found myself in the need of a generalpurpose data analysis application for single molecule force spectroscopy data analysis that could solve some common logistic and data analysis problems that are common in this technique. I developed an application that addresses some of these problems, herein presented (Part V), and that aims to be publicly released soon.
Resumo:
Over the past 15 years the Italian brewing scene showed interesting changes, especially with regard to the creation of many breweries with an annual production of less than 10,000 hectoliters. The beers produced by microbreweries are very susceptible to attack by spoilage micro-organisms that cause the deterioration of beer quality characteristics. In addition, most of the microbreweries do not practice heat treatments of stabilization and do not carry out quality checks on the product. The high presence of beer spoilage bacteria is an economic problem for the brewing industry because it can damage the brand and it causes high costs of product retrieval. This thesis project was aimed to study the management of the production process in the Italian microbreweries within a production less than 10,000 hl. In particular, the annual production, type of plant, yeast management, process management, cleaning and sanitizing of a representative sample of microbreweries were investigated. Furthermore was made a collection of samples in order to identify, with simple methods, what are spoilage bacteria more present in the Italian craft beers. 21% of the beers analysed were positive at the presence of lactic acid bacteria. These analytical data show the importance of understanding what are the weak points of the production process that cause the development of spoilage bacteria. Finally, the thesis examined the actual production of two microbreweries in order to understand the process management that can promote the growth of spoilage bacteria in beer and production plant. The analysis of the data for the two case studies was helpful to understand what are the critical points where the microorganisms are most frequently in contact with the product. The hygiene practices are crucial to ensure the quality of the finished product, especially in the case of non-pasteurized beer.
Resumo:
This dissertation comprises three essays on the Turkish labor market. The first essay characterizes the distinctive characteristics of the Turkish labor market with the aim of understanding the factors lying behind its long-standing poor performance relative to its European counterparts. The analysis is based on a cross-country comparison among selected European Union countries. Among all the indicators of labor market flexibility, non-wage cost rigidities are regarded as one of the most important factors in slowing down employment creation in Turkey. The second essay focuses on an employment subsidy policy which introduces a reduction in non-wage costs through social security premium incentives granted to women and young men. Exploiting a difference-in-difference-in differences strategy, I evaluate the effectiveness of this policy in creating employment for the target group. The results, net of the recent crisis effect, suggest that the policy accounts for a 1.4% to 1.6% increase in the probability of being hired for women aged 30 to 34 above men of the same age group in the periods shortly after the announcement of the policy. In the third essay of the dissertation, I analyze the labor supply response of married women to their husbands' job losses (AWE). I empirically test the hypothesis of added worker effect for the global economic crisis of 2008 by relying on the Turkey context. Identification is achieved by exploiting the exogenous variation in the output of male-dominated sectors hard-hit by the crisis and the gender-segmentation that characterizes the Turkish labor market. Findings based on the instrumental variable approach suggest that the added worker effect explains up to 64% of the observed increase in female labor force participation in Turkey. The size of the effect depends on how long it takes for wives to adjust their labor supply to their husbands' job losses.
The synthesis of maleic anhydride: study of a new process and improvement of the industrial catalyst
Resumo:
Maleic anhydride is an important chemical intermediate mainly produced by the selective oxidation of n-butane, an industrial process catalyzed by vanadyl pyrophosphate-based materials, (VO)2P2O7. The first topic was investigated in collaboration with a company specialized in the production of organic anhydrides (Polynt SpA), with the aim of improving the performance of the process for the selective oxidation of n-butane to maleic anhydride, comparing the behavior of an industrial vanadyl pyrophosphate catalysts when utilized either in the industrial plant or in lab-scale reactor. The study was focused on how the catalyst characteristics and reactivity are affected by the reaction conditions and how the addition of a dopant can enhance the catalytic performance. Moreover, the ageing of the catalyst was studied, in order to correlate the deactivation process with the modifications occurring in the catalyst. The second topic was produced within the Seventh Framework (FP7) European Project “EuroBioRef”. The study was focused on a new route for the synthesis of maleic anhydride starting from an alternative reactant produced by fermentation of biomass:“bio-1-butanol”. In this field, the different possible catalytic configurations were investigated: the process was divided into two main reactions, the dehydration of 1-butanol to butenes and the selective oxidation of butenes to maleic anhydride. The features needed to catalyze the two steps were analyzed and different materials were proposed as catalysts, namely Keggin-type polyoxometalates, VOPO4∙2H2O and (VO)2P2O7. The reactivity of 1-butanol was tested under different conditions, in order to optimize the performance and understand the nature of the interaction between the alcohol and the catalyst surface. Then, the key intermediates in the mechanism of 1-butanol oxidehydration to MA were studied, with the aim of understanding the possible reaction mechanism. Lastly, the reactivity of the chemically sourced 1-butanol was compared with that one of different types of bio-butanols produced by biomass fermentation.
Resumo:
Marine biomineralizing organisms provide a fundamental link between biology and environment. Calcified structure are important archives that can provide us main means of understanding organism adaptation, habits, environmental characteristics, and to look back in time and explore the past climate and their evolutionary history. In fact, biomineralized structures retain an unparalleled record of current and past ocean conditions through the investigation of their microchemistry and isotopes. This thesis considers aspects of two different biomineralization systems: fish otolith and coral skeletons at macro-, micro- and nanoscale, with the aim to understand how their morphology, structural characteristics and compositions can provide information of their functionality, and the environmental, behavioural, and evolutionary context in which organisms are framed. To this end, I applied a multidisciplinary approach in the scope to investigate calcified structures as “information recorders” and as models to study the phenotypic plasticity.
Resumo:
This thesis reports on the two main areas of our research: introductory programming as the traditional way of accessing informatics and cultural teaching informatics through unconventional pathways. The research on introductory programming aims to overcome challenges in traditional programming education, thus increasing participation in informatics. Improving access to informatics enables individuals to pursue more and better professional opportunities and contribute to informatics advancements. We aimed to balance active, student-centered activities and provide optimal support to novices at their level. Inspired by Productive Failure and exploring the concept of notional machine, our work focused on developing Necessity Learning Design, a design to help novices tackle new programming concepts. Using this design, we implemented a learning sequence to introduce arrays and evaluated it in a real high-school context. The subsequent chapters discuss our experiences teaching CS1 in a remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary school teachers to develop a learning module for teaching iteration using a visual programming environment. The research on teaching informatics principles through unconventional pathways, such as cryptography, aims to introduce informatics to a broader audience, particularly younger individuals that are less technical and professional-oriented. It emphasizes the importance of understanding informatics's cultural and scientific aspects to focus on the informatics societal value and its principles for active citizenship. After reflecting on computational thinking and inspired by the big ideas of science and informatics, we describe our hands-on approach to teaching cryptography in high school, which leverages its key scientific elements to emphasize its social aspects. Additionally, we present an activity for teaching public-key cryptography using graphs to explore fundamental concepts and methods in informatics and mathematics and their interdisciplinarity. In broadening the understanding of informatics, these research initiatives also aim to foster motivation and prime for more professional learning of informatics.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.
Resumo:
The rhizosphere, i.e. the soil surrounding the plant roots, and endosphere, i.e. the microbial communities within the plant organs harbors microbes known to influence root and plant physiological processes. An important question is to what extent plant species, genotypes and environmental conditions affect bacterial and fungal communities. The objectives of the first research study were to unravel and compare the rhizospheric microbiota of grape in two independent vineyards using 16S and ITS amplicon sequencing, evaluate location and varietal effects, and test the correlation between bioavailable copper levels and other soil parameters with microbiota composition and diversity. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between vineyards while it did not differ between two grape cultivars. In the second study, we were focusing on different wheat species and genotypes such as Bread Wheat, Wild Emmer Wheat, Domesticated Emmer Wheat, Durum Wheat Landraces, Durum Wheat cultivars, T. monococcum and triticale in two fields located in Bologna and Foggia. The objectives of this research experiment were to elucidate and compare the rhizospheric and endophytic microbiota of 30 diverse wheat genotypes in two different fields using 16S amplicon sequencing. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between fields of Bologna and Foggia, in which Bologna had a higher diversity in respect to Foggia for both rhizospheric and endophytic communities. Using Shannon index there was significant differences, for instance, between Durum Emmer Wheat and Wild Emmer Wheat in Bologna, and between Bread Wheat and Durum Wheat Landraces in Foggia. Our results contribute to understand the role of wheat species and genotype and the filed management on the root-microbe-soil interactions in the perspective of understanding their impact on crop systems sustainability.