18 resultados para Membrane fluidity
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.
Resumo:
Adaptation and acclimation to different temperatures of obligate psychrophilic, facultative psychrophilic and mesophilic yeasts. Production of ω-3 and ω-6 polyunsaturated fatty acids by fermentative way. Obligate psychrophilic, facultative psychrophilic and mesophilic yeasts were cultured in a carbon rich medium at different temperatures to investigate if growth parameters, lipid accumulation and fatty acid composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to lower temperature negatively affected their specific growth rate. Obligate psychrophiles exhibited the highest biomass yield (YX/S), followed by facultative psychrophiles, then by mesophiles. The growth temperature did not influence the YX/S of facultative psychrophiles and mesophiles. Acclimation to lower temperature caused the increase in lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophiles. Similar YL/X were found in both facultative and obligated psychrophiles, suggesting that lipid accumulation is not a distinctive character of adaptation to permanently cold environments. The extent of unsaturation of fatty acids was one major adaptive feature of the yeasts which colonize permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expenses of linoleic acid, whereas it was generally scarce or absent in all the others strains. Increased unsaturation of fatty acids was also an acclimatory response of mesophiles and facultative psychrophiles to lower temperature. It’s well known that omega-3 polyunsaturated fatty acids (PUFAs) display a variety of beneficial effects on various organ systems and diseases, therefore a process for the microbial production of omega-3 PUFAs would be of great interest. This work sought also to investigate if one of the better psychrophilic yeast, Rhodotorula glacialis DBVPG 4785, stimulated by acclamatory responses, produced omega-3 PUFAs. In fact, the adaptation of psychrophilic yeasts to cold niches is related to the production of higher amounts of lipids and to increased unsaturation degree of fatty acids, presumably to maintain membrane fluidity and functionality at low temperatures. Bioreactor fermentations of Rhodotorula glacialis DBVPG 4785 were carried out at 25, 20, 15, 10, 5, 0, and -3°C in a complex medium with high C:N ratio for 15 days. High biomass production was attained at all the temperatures with a similar biomass/glucose yield (YXS), between 0.40 and 0.45, but the specific growth rate of the strain decreased as the temperature diminished. The coefficients YL/X have been measured between a minimum of 0.50 to a maximum of 0.67, but it was not possible to show a clear effect of temperature. Similarly, the coefficient YL/S ranges from a minimum of 0.22 to a maximum of 0.28: again, it does not appear to be any significant changes due to temperature. Among omega-3 PUFAs, only α-linolenic acid (ALA, 18:3n-3) was found at temperatures below to 0°C, while, it’s remarkable, that the worthy arachidonic acid (C20:4,n-6), stearidonic acid (C20:4,n-3) C22:0 and docosahexaenoic acid (C22:6n-3) were produced only at the late exponential phase and the stationary phase of batch fermentations at 0 and -3°C. The docosahexaenoic acid (DHA) is a beneficial omega-3 PUFA that is usually found in fatty fish and fish oils. The results herein reported improve the knowledge about the responses which enable psychrophilic yeasts to cope with cold and may support exploitation of these strains as a new resource for biotechnological applications.
Resumo:
The thesis investigates two different in vitro aspects of Chlamydia trachomatis (CT). The thesis analyzes the effect of different sugars on CT infectivity. which is investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose or mannitol. Sugars effect on EB membrane fluidity is investigated by fluorescence anisotropy measurement, whereas changes in lipopolysaccharide exposure are examined by cytofluorimetric analysis. By Western blot experiments, the phosphorylation state of Focal Adhesion Kinase in cells infected with EBs pre-incubated with sugars it’s explored. Sugar significantly increase infectivity, acting on the EB structure. Sugars induce an increase of EB membrane fluidity, leading to changes in LPS exposure. After incubation with sucrose and mannitol, EBs lead to higher FAK phosphorylation, enhancing activation of anti-apoptotic and proliferative signals in the host. Secondly, the thesis explores the protective effect of different Lactobacilli against CT infection: Lactobacillus crispatus and Lactobacillus reuteri. CT infectivity is evaluated after host cells were treated for 1 hour with diluted supernatant cell-free fraction or with the bacterial cells. Assessed that L.crispatus is more protective than L.reuteri, lactic acid production is evaluated by HPLC. Subsequently Lactate dehydrogenases activity is evaluated by resazurin assay and by LC-MS. Then, D-lactate dehydrogenase specific activity has been investigated by measuring NADH formation. Afterwards, addition of D or L-lactic acid to L.reuteri supernatant has been performed and their effect in promoting protection in the host cells assessed. Then a metabolic analysis has been carried out by real-time measurement of mitochondrial respiration after treatment. Finally, histone acetylation and lactylation, and gene and protein expression of relevant targets, have been investigated. It is shown that the D isomer is more efficient in conferring protection, causing a shift in the host cell metabolic profile and a pattern of histone modifications that changes the expression of important targets.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
Nanofiltration (NF) is a pressure-driven membrane process, intermediate between reverse osmosis and ultrafiltration. Commercially available polymeric membranes have been used in a wide range of applications, such as drinking, process industry and waste water treatment. For all the applications requiring high stability and harsh washing procedures inorganic membranes are preferred due to their high chemical inertia. Typically, γ – Al2O3 as well as TiO2 and ZrO2 selective layers are used; the latter show higher chemical stability in a wide range of pH and temperatures. In this work the experimental characterization of two different type of membrane has been performed in order to investigate permeation properties, separation performance and efficiency with aqueous solutions containing strong inorganic electrolytes. The influence of salt concentration and feed pH as well as the role of concentration polarization and electrolyte type on the membrane behavior are investigated. Experimentation was performed testing a multi–layer structured NF membrane in α-Al2O3, TiO2 and ZrO2, and a polymeric membrane, in polyamide supported on polysulfone, with binary aqueous solutions containing NaCl, Na2SO4 or CaCl2; the effect of salt composition and pH in the feed side was studied both on flux and salt rejection. All the NF experimental data available for the two membranes were used to evaluate the volumetric membrane charge (X) corresponding to each operative conditions investigated, through the Donnan Steric Pore Model and Dielectric Exclusion (DSPM&DE). The results obtained allow to understand which are the main phenomena at the basis of the different behaviors observed.
Resumo:
The work of this thesis has been focused on the characterisation of inorganic membranes for the hydrogen purification from steam reforming gas. Composite membranes based on porous inorganic supports coated with palladium silver alloys and ceramic membranes have been analysed. A brief resume of theoretical laws governing transport of gases through dense and porous inorganic membranes and an overview on different methods to prepare inorganic membranes has been also reported. A description of the experimental apparatus used for the characterisation of gas permeability properties has been reported. The device used permits to evaluate transport properties in a wide range of temperatures (till 500°C) and pressures (till 15 bar). Data obtained from experimental campaigns reveal a good agreement with Sievert law for hydrogen transport through dense palladium based membranes while different transport mechanisms, such as Knudsen diffusion and Hagen-Poiseuille flow, have been observed for porous membranes and for palladium silver alloy ones with pinholes in the metal layer. Mixtures permeation experiments reveal also concentration polarisation phenomena and hydrogen permeability reduction due to carbon monoxide adsorption on metal surface.
Resumo:
Fenomeni di trasporto ed elettrostatici in membrane da Nanofiltrazione La capacità di predire le prestazioni delle membrane da nanofiltrazione è molto importante per il progetto e la gestione di processi di separazione a membrana. Tali prestazioni sono strettamente legate ai fenomeni di trasporto che regolano il moto dei soluti all’interno della matrice della membrana. Risulta, quindi, di rilevante importanza la conoscenza e lo studio di questi fenomeni; l’obiettivo finale è quello di mettere a punto modelli di trasporto appropriati che meglio descrivano il flusso dei soluti all’interno della membrana. A fianco dei modelli di trasporto ricopre, quindi, una importanza non secondaria la caratterizzazione dei parametri aggiustabili propri della membrana sulla quale si opera. La procedura di caratterizzazione di membrane deve chiarire le modalità di svolgimento delle prove sperimentali e le finalità che esse dovrebbero conseguire. Tuttavia, nonostante i miglioramenti concernenti la modellazione del trasporto di ioni in membrana ottenuti dalla ricerca negli ultimi anni, si è ancora lontani dall’avere a disposizione un modello univoco in grado di descrivere i fenomeni coinvolti in maniera chiara. Oltretutto, la palese incapacità del modello di non riuscire a prevedere gli andamenti sperimentali di reiezione nella gran parte dei casi relativi a miscele multicomponenti e le difficoltà legate alla convergenza numerica degli algoritmi risolutivi hanno fortemente limitato gli sviluppi del processo anche e soprattutto in termini applicativi. Non da ultimo, si avverte la necessità di poter prevedere ed interpretare l’andamento della carica di membrana al variare delle condizioni operative attraverso lo sviluppo di un modello matematico in grado di descrivere correttamente il meccanismo di formazione della carica. Nel caso di soluzioni elettrolitiche, infatti, è stato riconosciuto che la formazione della carica superficiale è tra i fattori che maggiormente caratterizzano le proprietà di separazione delle membrane. Essa gioca un ruolo importante nei processi di trasporto ed influenza la sua selettività nella separazione di molecole caricate; infatti la carica di membrana interagisce elettrostaticamente con gli ioni ed influenza l’efficienza di separazione degli stessi attraverso la partizione degli elettroliti dalla soluzione esterna all’interno dei pori del materiale. In sostanza, la carica delle membrane da NF è indotta dalle caratteristiche acide delle soluzioni elettrolitiche poste in contatto con la membrana stessa, nonché dal tipo e dalla concentrazione delle specie ioniche. Nello svolgimento di questo lavoro sono stati analizzati i principali fenomeni di trasporto ed elettrostatici coinvolti nel processo di nanofiltrazione, in particolare si è focalizzata l’attenzione sugli aspetti relativi alla loro modellazione matematica. La prima parte della tesi è dedicata con la presentazione del problema generale del trasporto di soluti all’interno di membrane da nanofiltrazione con riferimento alle equazioni alla base del modello DSP&DE, che rappresenta una razionalizzazione dei modelli esistenti sviluppati a partire dal modello DSPM, nel quale sono stati integrarti i fenomeni di esclusione dielettrica, per quanto riguarda la separazione di elettroliti nella filtrazione di soluzioni acquose in processi di Nanofiltrazione. Il modello DSP&DE, una volta definita la tipologia di elettroliti presenti nella soluzione alimentata e la loro concentrazione, viene completamente definito da tre parametri aggiustabili, strettamente riconducibili alle proprietà della singola membrana: il raggio medio dei pori all’interno della matrice, lo spessore effettivo e la densità di carica di membrana; in più può essere considerato un ulteriore parametro aggiustabile del modello il valore che la costante dielettrica del solvente assume quando confinato in pori di ridotte dimensioni. L’impostazione generale del modello DSP&DE, prevede la presentazione dei fenomeni di trasporto all’interno della membrana, descritti attraverso l’equazione di Nerst-Planck, e lo studio della ripartizione a ridosso dell’interfaccia membrana/soluzione esterna, che tiene in conto di diversi contributi: l’impedimento sterico, la non idealità della soluzione, l’effetto Donnan e l’esclusione dielettrica. Il capitolo si chiude con la presentazione di una procedura consigliata per la determinazione dei parametri aggiustabili del modello di trasporto. Il lavoro prosegue con una serie di applicazioni del modello a dati sperimentali ottenuti dalla caratterizzazione di membrane organiche CSM NE70 nel caso di soluzioni contenenti elettroliti. In particolare il modello viene applicato quale strumento atto ad ottenere informazioni utili per lo studio dei fenomeni coinvolti nel meccanismo di formazione della carica; dall’elaborazione dei dati sperimentali di reiezione in funzione del flusso è possibile ottenere dei valori di carica di membrana, assunta quale parametro aggiustabile del modello. che permettono di analizzare con affidabilità gli andamenti qualitativi ottenuti per la carica volumetrica di membrana al variare della concentrazione di sale nella corrente in alimentazione, del tipo di elettrolita studiato e del pH della soluzione. La seconda parte della tesi relativa allo studio ed alla modellazione del meccanismo di formazione della carica. Il punto di partenza di questo studio è rappresentato dai valori di carica ottenuti dall’elaborazione dei dati sperimentali di reiezione con il modello di trasporto, e tali valori verranno considerati quali valori “sperimentali” di riferimento con i quali confrontare i risultati ottenuti. Nella sezione di riferimento è contenuta la presentazione del modello teorico “adsorption-amphoteric” sviluppato al fine di descrivere ed interpretare i diversi comportamenti sperimentali ottenuti per la carica di membrana al variare delle condizioni operative. Nel modello la membrana è schematizzata come un insieme di siti attivi di due specie: il gruppo di siti idrofobici e quello de siti idrofilici, in grado di supportare le cariche derivanti da differenti meccanismi chimici e fisici. I principali fenomeni presi in considerazione nel determinare la carica volumetrica di membrana sono: i) la dissociazione acido/base dei siti idrofilici; ii) il site-binding dei contro-ioni sui siti idrofilici dissociati; iii) l’adsorbimento competitivo degli ioni in soluzione sui gruppi funzionali idrofobici. La struttura del modello è del tutto generale ed è in grado di mettere in evidenza quali sono i fenomeni rilevanti che intervengono nel determinare la carica di membrana; per questo motivo il modello permette di indagare il contributo di ciascun meccanismo considerato, in funzione delle condizioni operative. L’applicazione ai valori di carica disponibili per membrane Desal 5-DK nel caso di soluzioni contenenti singoli elettroliti, in particolare NaCl e CaCl2 permette di mettere in evidenza due aspetti fondamentali del modello: in primis la sua capacità di descrivere andamenti molto diversi tra loro per la carica di membrana facendo riferimento agli stessi tre semplici meccanismi, dall’altra parte permette di studiare l’effetto di ciascun meccanismo sull’andamento della carica totale di membrana e il suo peso relativo. Infine vengono verificate le previsioni ottenute con il modello dal suddetto studio attraverso il confronto con dati sperimentali di carica ottenuti dall’elaborazione dei dati sperimentali di reiezione disponibili per il caso di membrane CSM NE70. Tale confronto ha messo in evidenza le buone capacità previsionali del modello soprattutto nel caso di elettroliti non simmetrici quali CaCl2 e Na2SO4. In particolare nel caso un cui lo ione divalente rappresenta il contro-ione rispetto alla carica propria di membrana, la carica di membrana è caratterizzata da un andamento unimodale (contraddistinto da un estremante) con la concentrazione di sale in alimentazione. Il lavoro viene concluso con l’estensione del modello ADS-AMF al caso di soluzioni multicomponenti: è presentata una regola di mescolamento che permette di ottenere la carica per le soluzioni elettrolitiche multicomponenti a partire dai valori disponibili per i singoli ioni componenti la miscela.
Resumo:
The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.
Resumo:
Chromatography represents one of the most important and widely used unit operation in the biotechnology industry. However this technique suffers from several limitations such as high pressure drop, slow mass transfer through the diffusive pores and strong dependence of the binding capacity on flow rate. In this work, affinity membranes with improved capacity have been considered as an alternative technology for the capturing step in antibody manufacturing. Several affinity membranes have been prepared starting from various membrane supports. Different affinity ligands have been utilized like Protein A, the natural ligand of choice for antibodies, as well as synthetic ligands that exhibit affinity for the Fc portion of antibodies. The membranes have been characterized in detail: binding and elution performance was evaluated in adsorption experiments using pure IgG solutions, while membrane selectivity was evaluated using complex solutions like a cell culture supernatant. The most promising affinity membranes were extensively tested in dynamic experiments. The effects of operating parameters like feed concentration and flow rate on separation performances like binding capacity, selectivity and process yield have been studied in detail in order to find the optimal conditions for binding and elution steps. The membranes have been used over several complete chromatographic cycles to evaluate the effects of ageing and of membrane regeneration on dynamic binding capacity. A novel mathematical model is proposed that can describe all the chromatographic steps involved in the membrane affinity chromatography process for protein purification. The mathematical description is based on the species continuity equation coupled with a proper binding kinetic equation, and suitable to describe adequately the dispersion phenomena occurring both in the micro-porous membranes as well as in the extra-column devices used in the system. The model considers specifically all the different chromatographic steps, namely adsorption, washing and elution. The few relevant fitting parameters of the model were derived from a calibration with the experimental affinity cycles performed with pure IgG solutions, then the model is used to describe experimental data obtained in chromatographic cycles carried out with complex feeds as the cell culture supernatant. Simulations reveal a good agreement with experimental data in all the chromatography steps, both in the case of pure IgG solutions and for the cell culture supernatant considered.
Resumo:
The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.
Resumo:
Membrane-based separation processes are acquiring, in the last years, an increasing importance because of their intrinsic energetic and environmental sustainability: some types of polymeric materials, showing adequate perm-selectivity features, appear rather suitable for these applications, because of their relatively low cost and easy processability. In this work have been studied two different types of polymeric membranes, in view of possible applications to the gas separation processes, i.e. Mixed Matrix Membranes (MMMs) and high free volume glassy polymers. Since the early 90’s, it has been understood that the performances of polymeric materials in the field of gas separations show an upper bound in terms of permeability and selectivity: in particular, an increase of permeability is often accompanied by a decrease of selectivity and vice-versa, while several inorganic materials, like zeolites or silica derivates, can overcome this limitation. As a consequence, it has been developed the idea of dispersing inorganic particles in polymeric matrices, in order to obtain membranes with improved perm-selectivity features. In particular, dispersing fumed silica nanoparticles in high free volume glassy polymers improves in all the cases gases and vapours permeability, while the selectivity may either increase or decrease, depending upon material and gas mixture: that effect is due to the capacity of nanoparticles to disrupt the local chain packing, increasing the dimensions of excess free volume elements trapped in the polymer matrix. In this work different kinds of MMMs were fabricated using amorphous Teflon® AF or PTMSP and fumed silica: in all the cases, a considerable increase of solubility, diffusivity and permeability of gases and vapours (n-alkanes, CO2, methanol) was observed, while the selectivity shows a non-monotonous trend with filler fraction. Moreover, the classical models for composites are not able to capture the increase of transport properties due to the silica addition, so it has been necessary to develop and validate an appropriate thermodynamic model that allows to predict correctly the mass transport features of MMMs. In this work, another material, called poly-trimethylsilyl-norbornene (PTMSN) was examined: it is a new generation high free volume glassy polymer that, like PTMSP, shows unusual high permeability and selectivity levels to the more condensable vapours. These two polymer differ each other because PTMSN shows a more pronounced chemical stability, due to its structure double-bond free. For this polymer, a set of Lattice Fluid parameters was estimated, making possible a comparison between experimental and theoretical solubility isotherms for hydrocarbons and alcoholic vapours: the successfully modelling task, based on application of NELF model, offers a reliable alternative to direct sorption measurement, which is extremely time-consuming due to the relevant relaxation phenomena showed by each sorption step. For this material also dilation experiments were performed, in order to quantify its dimensional stability in presence of large size, swelling vapours.
Resumo:
Organotin compounds are worldwide diffused environmental contaminants, mainly as consequence of their extensive past use as biocides in antifouling paints. In spite of law restrictions, due to unwanted effects, organotin still persist in waters, being poorly degraded, easily resuspended from sediments and bioaccumulated in exposed organisms. The widespread toxicity and the possible threat to humans, likely to be organotin-exposed through contaminated seafood, make organotin interactions with biomolecules an intriguing biochemical topic, apart from a matter of ecotoxicological concern. Among organotins, tributyltin (TBT) is long known as the most dangerous and abundant chemical species in the Mediterranean Sea. Due to its amphiphilic nature, provided by three lipophilic arms and an electrophilic tin core, TBT can be easily incorporated in biomembranes and affect their functionality. Accordingly, it is known as a membrane-active toxicant and a mitochondrial poison. Up to now the molecular action modes of TBT are still partially unclear and poorly explored in bivalve mollusks, even if the latter play a not neglectable role in the marine trophic chain and efficiently accumulate organotins. The bivalve mollusk Mytilus galloprovincialis, selected for all experiments, is widely cultivated in the Mediterranean and currently used in ecotoxicological studies. Most work of this thesis was devoted to TBT effects on mussel mitochondria, but other possible targets of TBT were also considered. A great deal of literature points out TBT as endocrine disrupter and the masculinization of female marine gastropods, the so-called imposex, currently signals environmental organotin contamination. The hormonal status of TBT-exposed mussels and the possible interaction between hormones and contaminants in modulating microsomal hydroxilases, involved in steroid hormone and organotin detoxification, were the research topics in the period spent in Barcelona (Marco Polo fellowship). The variegated experimental approach, which consisted of two exposure experiments and in vitro tests, and the choice of selected tissues of M. galloprovincialis, the midgut gland for mitochondrial and microsomal preparations for subsequent laboratory assays and the gonads for the endocrine evaluations, aimed at drawing a clarifying pattern on the molecular mechanisms involved in organotin toxicity. TBT was promptly incorporated in midgut gland mitochondria of adult mussels exposed to 0.5 and 1.0 μg/L TBT, and partially degraded to DBT. TBT incorporation was accompanied by a decrease in the mitochondrial oligomycin-sensitive Mg-ATPase activity, while the coexistent oligomycin-insensitive fraction was unaffected. Mitochondrial fatty acids showed a clear rise in n-3 polyunsaturated fatty acids after 120 hr of TBT exposure, mainly referable to an increase in 22:6 level. TBT was also shown to inhibit the ATP hydrolytic activity of the mitochondrial F1FO complex in vitro and to promote an apparent loss of oligomycin sensitivity at higher than 1.0 μM concentration. The complex dose-dependent profile of the inhibition curve lead to the hypothesis of multiple TBT binding sites. At lower than 1.0 μM TBT concentrations the non competitive enzyme inhibition by TBT was ascribed to the non covalent binding of TBT to FO subunit. On the other hand the observed drop in oligomycin sensitivity at higher than 1.0 μM TBT could be related to the onset of covalent bonds involving thiolic groups on the enzyme structure, apparently reached only at high TBT levels. The mitochondrial respiratory complexes were in vitro affected by TBT, apart from the cytocrome c oxidase which was apparently refractory to the contaminant. The most striking inhibitory effect was shown on complex I, and ascribed to possible covalent bonds of TBT with –SH groups on the enzyme complexes. This mechanism, shouldered by the progressive decrease of free cystein residues in the presence of increasing TBT concentrations, suggests that the onset of covalent tin-sulphur bonds in distinct protein structures may constitute the molecular basis of widespread TBT effects on mitochondrial complexes. Energy production disturbances, in turn affecting energy consuming mechanisms, could be involved in other cellular changes. Mussels exposed to a wide range of TBT concentrations (20 - 200 and 2000 ng/L respectively) did not show any change in testosterone and estrogen levels in mature gonads. Most hormones were in the non-biologically active esterified form both in control and in TBT-treated mussels. Probably the endocrine status of sexually mature mussels could be refractory even to high TBT doses. In mussel digestive gland the high biological variability of microsomal 7-benzyloxy-4-trifluoromethylcoumarin-O-Debenzyloxylase (BFCOD) activity, taken as a measure of CYP3A-like efficiency, probably concealed any enzyme response to TBT exposure. On the other hand the TBT-driven enhancement of BFCOD activity in vitro was once again ascribed to covalent binding to thiol groups which, in this case, would stimulate the enzyme activity. In mussels from Barcelona harbour, a highly contaminated site, the enzyme showed a decreased affinity for the 7-benzyloxy-4-trifluoromethylcoumarin (BCF) substrate with respect to mussel sampled from Ebro Delta, a non-polluted marine site. Contaminant exposure may thus alter the kinetic features of enzymes involved in detoxification mechanisms. Contaminants and steroid hormones were clearly shown to mutually interact in the modulation of detoxification mechanisms. The xenoestrogen 17α-ethylenyl estradiol (EE2) displayed a non-competitive mixed inhibition of CYP3A-like activity by a preferential bond to the free enzyme both in Barcelona harbour and Ebro Delta mussels. The possible interaction with co-present contaminants in Barcelona harbour mussels apparently lessened the formation of the ternary complex enzyme-EE2-BCF. The whole of data confirms TBT as membrane toxicant in mussels as in other species and stresses TBT covalent binding to protein thiols as a widespread mechanism of membrane-bound-enzyme activity modulation by the contaminant.
Resumo:
The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.