6 resultados para Medical and biological imaging

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel 1997 venne isolata una popolazione cellulare con caratteristiche appartenenti a cellule endoteliali mature e a cellule progenitrici ; le cellule appartenenti a queste popolazione furono denominate EPCs (cellule endoteliali progenitrici circolanti) e fu messa in evidenza la loro capacità di dare origine a vasculogenesi postnatale. Lo scopo dello studio è stata la caratterizzazione di tale popolazione cellulare in termini biologici e la valutazione delle differenze delle EPCs in soggetti sani e nefropatici in emodialisi. È stata infine valutata l’eventuale capacità della Vitamina D di influenzare le capacità delle Late EPCs in termini di formazione di colonie in vitro e di attività anticalcifica in soggetti in insufficienza renale cronica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was aimed to correlate the results of relative germination from in vitro tests by trifloxystrobin with those of qPCR on a wide range of V. inaequalis populations and monoconidial isolates. Samples were collected in Italian and Turkish distinct locations from orchards with different scab management. In this study, an allele-specific qPCR with primer sets designed was successfully developed to quantitatively determine the frequency of QoI-resistant allele G143A in populations and monoconidial isolates of V. inaequalis. qPCR followed a similar pattern to that obtained using in vitro conidial germination test in very sensitive and very resistant populations. However, the variability between two test results was observed in hetereogenous populations. Therefore, the results of correlations between in vitro and qPCR showed a positive but not very high correlation for Venturia inaequalis populations (R2=0.70). On the contrary, this correlation between two assessment methods was very high for monoconidial isolates (R2=0.92). Results obtained in quantitative PCR and from traditional spore germination assay differed for the same fungal population and in some cases, it is difficult to assess the resistance in the field by only qPCR. It was concluded that it is not always possible to correlate the frequency of detection of the mutation with biological assessment. In such situations, monitoring by molecular techniques must be supported by standard in vitro resistance assessments and observation of field performance in order to have correct conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports the outcome of the GIMEMA CML WP study CML0811, an independent trial investigating nilotinib as front-line treatment in chronic phase chronic myeloid leukemia (CML). Moreover, the results of the proteomic analysis of the CD34+ cells collected at CML diagnosis, compared to the counterpart from healthy donors, are reported. Our study confirmed that nilotinib is highly effective in the prevention of the progression to accelerated/blast phase, a condition that today is still associated with high mortality rates. Despite the relatively short follow-up, cardiovascular issues, particularly atherosclerotic adverse events (AE), have emerged, and the frequency of these AEs may counterbalance the anti-leukemic efficacy. The deep molecular response rates in our study compare favorably to those obtained with imatinib, in historic cohorts, and confirm the findings of the Company-sponsored ENESTnd study. Considering the increasing rates of deep MR over time we observed, a significant proportion of patients will be candidate to treatment discontinuation in the next years, with higher probability of remaining disease-free in the long term. The presence of the additional and complex changes we found at the proteomic level in CML CD34+ cells should be taken into account for the investigation on novel targeted therapies, aimed at the eradication of the disease.