5 resultados para Medical Physics, Hyperpolarization, Metabolic Imaging

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is one of the principal causes of death in the world; almost 8.2 million of deaths were counted in 2012. Emerging evidences indicate that most of the tumors have an increased glycolytic rate and a detriment of oxidative phosphorylation to support abnormal cell proliferation; this phenomenon is known as aerobic glycolysis or Warburg effect. This switching toward glycolysis implies that cancer tissues metabolize approximately tenfold more glucose to lactate in a given time and the amount of lactate released from cancer tissues is much greater than from normal ones. In view of these fundamental discoveries alterations of the cellular metabolism should be considered a crucial hallmark of cancer. Therefore, the investigation of the metabolic differences between normal and transformed cells is important in cancer research and it might find clinical applications. The aim of the project was to investigate the cellular metabolic alterations at single cell level, by monitoring glucose and lactate, in order to provide a better insight in cancer research. For this purpose, electrochemical techniques have been applied. Enzyme-based electrode biosensors for lactate and glucose were –ad hoc- optimized within the project and used as probes for Scanning Electrochemical Microscopy (SECM). The UME biosensor manufacturing and optimization represented a consistent part of the work and a full description of the sensor preparation protocols and of the characterization methods employed is reported. This set-up (SECM used with microbiosensor probes) enabled the non-invasive study of cellular metabolism at single cell level. The knowledge of cancer cell metabolism is required to design more efficient treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUNE is a next-generation long-baseline neutrino oscillation experiment. It aims to measure the still unknown $ \delta_{CP} $ violation phase and the sign of $ \Delta m_{13}^2 $, which defines the neutrino mass ordering. DUNE will exploit a Far Detector composed of four multi-kiloton LArTPCs, and a Near Detector (ND) complex located close to the neutrino source at Fermilab. The SAND detector at the ND complex is designed to perform on-axis beam monitoring, constrain uncertainties in the oscillation analysis and perform precision neutrino physics measurements. SAND includes a 0.6 T super-conductive magnet, an electromagnetic calorimeter, a 1-ton liquid Argon detector - GRAIN - and a modular, low-density straw tube target tracker system. GRAIN is an innovative LAr detector where neutrino interactions can be reconstructed using only the LAr scintillation light imaged by an optical system based on Coded Aperture masks and lenses - a novel approach never used before in particle physics applications. In this thesis, a first evaluation of GRAIN track reconstruction and calorimetric capabilities was obtained with an optical system based on Coded Aperture cameras. A simulation of $\nu_\mu + Ar$ interactions with the energy spectrum expected at the future Fermilab Long Baseline Neutrino Facility (LBNF) was performed. The performance of SAND was evaluated, combining the information provided by all its sub-detectors, on the selection of $ \nu_\mu + Ar \to \mu^- + p + X $ sample and on the neutrino energy reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of metastatic castration-resistant prostate cancer (mCRPC) is currently characterized by several drugs with different mechanisms of action, such as new generation hormonal agents (abiraterone, enzalutamide), chemotherapy (docetaxel, cabazitaxel), PARP inhibitors (olaparib) and radiometabolic therapies (radium-223, LuPSMA). There is an urgent need to identify biomarkers to guide personalized therapy in mCRPC. In recent years, the status of androgen receptor (AR) gene detected in liquid biopsy has been associated with outcomes in patients treated with abiraterone or enzalutamide. More recently, plasma tumor DNA (ptDNA) and its changes during treatment have been identified as early indicators of response to anticancer treatments. Recent works also suggested a potential role of tumor-related metabolic parameters of 18Fluoro-Choline Positron Emission Tomography (F18CH-PET)-computed tomography (CT) as a prognostic tool in mCRCP. Other clinical features, such as the presence of visceral metastases, have been correlated with outcome in mCRPC patients. Recent studies conducted by our research group have designed and validated a prognostic model based on the combination of molecular characteristics (ptDNA levels), metabolic features found in basal FCH PET scans (metabolic tumor volume values, MTV), clinical parameters (absence or presence of visceral metastases), and laboratory tests (serum lactate dehydrogenase levels, LDH). Within this PhD project, 30 patients affected by mCRPC, pre-treated with abiraterone or enzalutamide, candidate for taxane-based treatments (docetaxel or cabazitaxel), have been prospectively evaluated. The prognostic model previously described was applied to this population, to interrogate its prognostic power in a more advanced cohort of patients, resulting in a further external validation of the tool.