8 resultados para Medical Laboratory Technology

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subject of this research, the medicalization of the gendered body, is a shifting object. It has changed its medical name from Intersex to DSD (Disorders -or Divergence- of Sex Development), since the beginning of this research project. Loosely speaking it addresses the gendered components of the body, and their subsequent consideration. Drawing closer, it addresses how modern medicine treats people who manifest variations of one of the gendered components of the body, inserting their bodies into pathological categories now called DSD. This shifting terrain of different modes of viewing the gendered body has grown to include many variations, no longer solely interested in the mythical hermaphrodite. The locus of this investigation is in the interaction between these patient groups and doctors in Italy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavements’ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomedical analyses are becoming increasingly complex, with respect to both the type of the data to be produced and the procedures to be executed. This trend is expected to continue in the future. The development of information and protocol management systems that can sustain this challenge is therefore becoming an essential enabling factor for all actors in the field. The use of custom-built solutions that require the biology domain expert to acquire or procure software engineering expertise in the development of the laboratory infrastructure is not fully satisfactory because it incurs undesirable mutual knowledge dependencies between the two camps. We propose instead an infrastructure concept that enables the domain experts to express laboratory protocols using proper domain knowledge, free from the incidence and mediation of the software implementation artefacts. In the system that we propose this is made possible by basing the modelling language on an authoritative domain specific ontology and then using modern model-driven architecture technology to transform the user models in software artefacts ready for execution in a multi-agent based execution platform specialized for biomedical laboratories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nel corso degli ultimi anni le problematiche legate al ruolo vettore delle zanzare stanno emergendo sia per quanto riguarda l’uomo che gli animali allevati e selvatici. Diversi arbovirus come West Nile, Chikungunya, Usutu e Dengue, possono facilmente spostarsi a livello planetario ed essere introdotti anche nei nostri territori dove possono dare avvio a episodi epidemici. Le tecniche di monitoraggio e sorveglianza dei Culicidi possono essere convenientemente utilizzate per il rilevamento precoce dell’attività virale sul territorio e per la stima del rischio di epidemie al fine dell’adozione delle opportune azioni di Sanità Pubblica. Io scopo della ricerca del dottorato è inserito nel contesto dei temi di sviluppo del Piano regionale sorveglianza delle malattie trasmesse da vettori in Emilia Romagna. La ricerca condotta è inquadrata prevalentemente sotto l’aspetto entomologico applicativo di utilizzo di dispositivi (trappole) che possano catturare efficacemente possibili insetti vettori. In particolare questa ricerca è stata mirata allo studio comparativo in campo di diversi tipi di trappole per la cattura di adulti di zanzara, cercando di interpretare i dati per capire un potenziale valore di efficacia/efficienza nel rilevamento della circolazione virale e come supporto alla pianificazione della rete di sorveglianza dal punto di vista operativo mediante dispositivi adeguati alle finalità d’indagine. Si è cercato di trovare un dispositivo idoneo, approfondendone gli aspetti operativi/funzionali, ai fini di cattura del vettore principale del West Nile Virus, cioè la zanzara comune, da affiancare all’unica tipologia di trappola usata in precedenza. Le prove saranno svolte sia in campo che presso il laboratorio di Entomologia Medica Veterinaria del Centro Agricoltura Ambiente “G. Nicoli” di Crevalcore, in collaborazione con il Dipartimento di Scienze e Tecnologie Agroambientali della Facoltà di Agraria dell’Università di Bologna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Plasma Focus device can confine in a small region a plasma generated during the pinch phase. When the plasma is in the pinch condition it creates an environment that produces several kinds of radiations. When the filling gas is nitrogen, a self-collimated backwardly emitted electron beam, slightly spread by the coulomb repulsion, can be considered one of the most interesting outputs. That beam can be converted into X-ray pulses able to transfer energy at an Ultra-High Dose-Rate (UH-DR), up to 1 Gy pulse-1, for clinical applications, research, or industrial purposes. The radiation fields have been studied with the PFMA-3 hosted at the University of Bologna, finding the radiation behavior at different operating conditions and working parameters for a proper tuning of this class of devices in clinical applications. The experimental outcomes have been compared with available analytical formalisms as benchmark and the scaling laws have been proposed. A set of Monte Carlo models have been built with direct and adjoint techniques for an accurate X-ray source characterization and for setting fast and reliable irradiation planning for patients. By coupling deterministic and Monte Carlo codes, a focusing lens for the charged particles has been designed for obtaining a beam suitable for applications as external radiotherapy or intra-operative radiation therapy. The radiobiological effectiveness of the UH PF DR, a FLASH source, has been evaluated by coupling different Monte Carlo codes estimating the overall level of DNA damage at the multi-cellular and tissue levels by considering the spatial variation effects as well as the radiation field characteristics. The numerical results have been correlated to the experimental outcomes. Finally, ambient dose measurements have been performed for tuning the numerical models and obtaining doses for radiation protection purposes. The PFMA-3 technology has been fully characterized toward clinical implementation and installation in a medical facility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project answers to the following central research question: ‘How would a moral duty of patients to transfer (health) data for the benefit of health care improvement, research, and public health in the eHealth sector sit within the existing confidentiality, privacy, and data protection legislations?’. The improvement of healthcare services, research, and public health relies on patient data, which is why one might raise the question concerning a potential moral responsibility of patients to transfer data concerning health. Such a responsibility logically would have subsequent consequences for care providers concerning the further transferring of health data with other healthcare providers or researchers and other organisations (who also possibly transfer the data further with others and other organisations). Otherwise, the purpose of the patients’ moral duty, i.e. to improve the care system and research, would be undermined. Albeit the arguments that may exist in favour of a moral responsibility of patients to share health-related data, there are also some moral hurdles that come with such a moral responsibility. Furthermore, the existing European and national confidentiality, privacy and data protection legislations appear to hamper such a possible moral duty, and they may need to be reconsidered to unlock the full use of data for healthcare and research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the intersection of biology, chemistry, and engineering, biosensors are a multidisciplinary innovation that provide a cost-effective alternative to traditional laboratory techniques. Due to their advantages, biosensors are used in medical diagnostics, environmental monitoring, food safety and many other fields. The first part of the thesis is concerned with learning the state of the art of paper-based immunosensors with bioluminescent (BL) and chemiluminescent (CL) detection. The use of biospecific assays combined with CL detection and paper-based technology offers an optimal approach to creating analytical tools for on-site applications and we have focused on the specific areas that need to be considered more in order to ensure a future practical implementation of these methods in routine analyses. The subsequent part of the thesis addresses the development of an autonomous lab-on-chip platform for performing chemiluminescent-based bioassays in space environment, exploiting a CubeSat platform for astrobiological investigations. An origami-inspired microfluidic paper-based analytical device has been developed with the purpose of assesses its performance in space and to evaluate its functionality and the resilience of the (bio)molecules when exposed to a radiation-rich environment. Subsequently, we designed a paper-based assay to detect traces of ovalbumin in food samples, creating a user-friendly immunosensing platform. To this purpose, we developed an origami device that exploits a competitive immunoassay coupled with chemiluminescence detection and magnetic microbeads used to immobilize ovalbumin on paper. Finally, with the aim of exploring the use of biomimetic materials, an hydrogel-based chemiluminescence biosensor for the detection of H2O2 and glucose was developed. A guanosine hydrogel was prepared and loaded with luminol and hemin, miming a DNAzyme activity. Subsequently, the hydrogel was modified by incorporating glucose oxidase enzyme to enable glucose biosensing. The emitted photons were detected using a portable device equipped with a smartphone's CMOS (complementary metal oxide semiconductor) camera for CL emission detection.