5 resultados para Maxwell equations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is required. Modeling of solar cells by electro-optical numerical simulation is helpful to predict the performance of future generations devices exhibiting advanced light-trapping schemes and to provide new and more specific guidelines to industry. The approaches to optical simulation commonly adopted for c-Si solar cells may lead to inaccurate results in case of thin film and nano-stuctured solar cells. On the other hand, rigorous solvers of Maxwell equations are really cpu- and memory-intensive. Recently, in optical simulation of solar cells, the RCWA method has gained relevance, providing a good trade-off between accuracy and computational resources requirement. This thesis is a contribution to the numerical simulation of advanced silicon solar cells by means of a state-of-the-art numerical 2-D/3-D device simulator, that has been successfully applied to the simulation of selective emitter and the rear point contact solar cells, for which the multi-dimensionality of the transport model is required in order to properly account for all physical competing mechanisms. In the second part of the thesis, the optical problems is discussed. Two novel and computationally efficient RCWA implementations for 2-D simulation domains as well as a third RCWA for 3-D structures based on an eigenvalues calculation approach have been presented. The proposed simulators have been validated in terms of accuracy, numerical convergence, computation time and correctness of results.
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
Sono indagate le implicazioni teoriche e sperimentali derivanti dall'assunzione, nella teoria della relatività speciale, di un criterio di sincronizzazione (detta assoluta) diverso da quello standard. La scelta della sincronizzazione assoluta è giustificata da alcune considerazioni di carattere epistemologico sullo status di fenomeni quali la contrazione delle lunghezze e la dilatazione del tempo. Oltre che a fornire una diversa interpretazione, la sincronizzazione assoluta rappresenta una estensione del campo di applicazione della relatività speciale in quanto può essere attuata anche in sistemi di riferimento accelerati. Questa estensione consente di trattare in maniera unitaria i fenomeni sia in sistemi di riferimento inerziali che accelerati. L'introduzione della sincronizzazione assoluta implica una modifica delle trasformazioni di Lorentz. Una caratteristica di queste nuove trasformazioni (dette inerziali) è che la trasformazione del tempo è indipendente dalle coordinate spaziali. Le trasformazioni inerziali sono ottenute nel caso generale tra due sistemi di riferimento aventi velocità (assolute) u1 e u2 comunque orientate. Viene mostrato che le trasformazioni inerziali possono formare un gruppo pur di prendere in considerazione anche riferimenti non fisicamente realizzabili perché superluminali. È analizzato il moto rigido secondo Born di un corpo esteso considerando la sincronizzazione assoluta. Sulla base delle trasformazioni inerziali si derivano le trasformazioni per i campi elettromagnetici e le equazioni di questi campi (che sostituiscono le equazioni di Maxwell). Si mostra che queste equazioni contengono soluzioni in assenza di cariche che si propagano nello spazio come onde generalmente anisotrope in accordo con quanto previsto dalle trasformazioni inerziali. L'applicazione di questa teoria elettromagnetica a sistemi accelerati mostra l'esistenza di fenomeni mai osservati che, pur non essendo in contraddizione con la relatività standard, ne forzano l'interpretazione. Viene proposto e descritto un esperimento in cui uno di questi fenomeni è misurabile.