3 resultados para Maximum entropy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.