6 resultados para Matrix factorization
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work, new tools in atmospheric pollutant sampling and analysis were applied in order to go deeper in source apportionment study. The project was developed mainly by the study of atmospheric emission sources in a suburban area influenced by a municipal solid waste incinerator (MSWI), a medium-sized coastal tourist town and a motorway. Two main research lines were followed. For what concerns the first line, the potentiality of the use of PM samplers coupled with a wind select sensor was assessed. Results showed that they may be a valid support in source apportionment studies. However, meteorological and territorial conditions could strongly affect the results. Moreover, new markers were investigated, particularly focusing on the processes of biomass burning. OC revealed a good biomass combustion process indicator, as well as all determined organic compounds. Among metals, lead and aluminium are well related to the biomass combustion. Surprisingly PM was not enriched of potassium during bonfire event. The second research line consists on the application of Positive Matrix factorization (PMF), a new statistical tool in data analysis. This new technique was applied to datasets which refer to different time resolution data. PMF application to atmospheric deposition fluxes identified six main sources affecting the area. The incinerator’s relative contribution seemed to be negligible. PMF analysis was then applied to PM2.5 collected with samplers coupled with a wind select sensor. The higher number of determined environmental indicators allowed to obtain more detailed results on the sources affecting the area. Vehicular traffic revealed the source of greatest concern for the study area. Also in this case, incinerator’s relative contribution seemed to be negligible. Finally, the application of PMF analysis to hourly aerosol data demonstrated that the higher the temporal resolution of the data was, the more the source profiles were close to the real one.
Resumo:
The main purpose of this thesis is to go beyond two usual assumptions that accompany theoretical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed) hypothesis on the noise elements and the finite rank regime. The first one appears since the early birth of spin-glasses. The second one instead concerns the inference viewpoint. Disordered systems and Bayesian inference have a well-established relation, evidenced by their continuous cross-fertilization. The thesis makes use of techniques coming both from the rigorous mathematical machinery of spin-glasses, such as the interpolation scheme, and from Statistical Physics, such as the replica method. The first chapter contains an introduction to the Sherrington-Kirkpatrick and spiked Wigner models. The first is a mean field spin-glass where the couplings are i.i.d. Gaussian random variables. The second instead amounts to establish the information theoretical limits in the reconstruction of a fixed low rank matrix, the “spike”, blurred by additive Gaussian noise. In chapters 2 and 3 the i.i.d. hypothesis on the noise is broken by assuming a noise with inhomogeneous variance profile. In spin-glasses this leads to multi-species models. The inferential counterpart is called spatial coupling. All the previous models are usually studied in the Bayes-optimal setting, where everything is known about the generating process of the data. In chapter 4 instead we study the spiked Wigner model where the prior on the signal to reconstruct is ignored. In chapter 5 we analyze the statistical limits of a spiked Wigner model where the noise is no longer Gaussian, but drawn from a random matrix ensemble, which makes its elements dependent. The thesis ends with chapter 6, where the challenging problem of high-rank probabilistic matrix factorization is tackled. Here we introduce a new procedure called "decimation" and we show that it is theoretically to perform matrix factorization through it.
Resumo:
Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.
Resumo:
This research deals with the deepening and use of an environmental accounting matrix in Emilia-Romagna, RAMEA air emissions (regional NAMEA), carried out by the Regional Environment Agency (Arpa) in an European project. After a depiction of the international context regarding the widespread needing to integrate economic indicators and go beyond conventional reporting system, this study explains the structure, update and development of the tool. The overall aim is to outline the matrix for environmental assessments of regional plans, draw up sustainable reports and monitor effects of regional policies in a sustainable development perspective. The work focused on an application of a Shift-Share model, on the integration with eco-taxes, industrial waste production, energy consumptions, on applications of the extended RAMEA as a policy tool, following Eurostat guidelines. The common thread is the eco-efficiency (economic-environmental efficiency) index. The first part, in English, treats the methodology used to build a more complete tool; in the second part RAMEA has been applied on two regional case studies, in Italian, to support decision makers regarding Strategic Environmental Assessments’ processes (2001/42/EC). The aim is to support an evidence-based policy making by integrating sustainable development concerns at all levels. The first case study regards integrated environmental-economic analyses in support to the SEA of the Regional Waste management plan. For the industrial waste production an extended and updated RAMEA has been developed as a useful policy tool, to help in analysing and monitoring the state of environmental-economic performances. The second case study deals with the environmental report for the SEA of the Regional Program concerning productive activities. RAMEA has been applied aiming to an integrated environmental-economic analysis of the context, to investigate the performances of the regional production chains and to depict and monitor the area where the program should be carried out, from an integrated environmental-economic perspective.
Resumo:
The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique's foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of electrocardiographic tracks with minimum-complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption; in this context, we show how a random matrix generation strategy with a controlled amount of perturbations can be used to distinguish between multiple user classes with different quality of access to the encrypted information content. Finally, we explore the application of compressed sensing in the design of a multispectral imager, by implementing an optical scheme that entails a coded aperture array and Fabry-Pérot spectral filters. The signal recoveries obtained by processing real-world measurements show promising results, that leave room for an improvement of the sensing matrix calibration problem in the devised imager.