4 resultados para Materials -- Pràctiques, exercicis, etc.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last year [1], Angiolini and co-workers have synthesized and investigated methacrylic polymers bearing in the side chain the chiral cyclic (S)-3-hydroxypyrrolidine moiety interposed between the main chain and the trans-azoaromatic chromophore, substituted or not in the 4’ position by an electron-withdrawing group. In these materials, the presence of a rigid chiral moiety of one prevailing absolute configuration favours the establishment of a chiral conformation of one prevailing helical handedness, at least within chain segments of the macromolecules, which can be observed by circular dichroism (CD). The simultaneous presence of the azoaromatic and chiral functionalities allows the polymers to display both the properties typical of dissymmetric systems (optical activity, exciton splitting of dichroic absorptions), as well as the features typical of photochromic materials (photorefractivity, photoresponsiveness, NLO properties). The first part of this research was to synthesize analogue homopolymers and copolymers based on bisazoaromatic moiety and compare their properties to those of the above mentioned analogue derivatives bearing only one azoaromatic chromophore in the side chain. We focused also the attention on the effects induced on the thermal and chiroptical behaviours by the insertion of particulars achiral comonomers characterized by different side-chain mobility and grown hindrance (MMA, tert-BMA and TrMA). On the other hand carbazole containing polymers [2] have attracted much attention because of their unique features. The use of these materials in advanced micro- and nanotechnologies spreads in many different applications such as photoconductive and photorefractive polymers, electroluminescent devices, programmable optical interconnections, data storage, chemical photoreceptors, NLO, surface relief gratings, blue emitting materials and holographic memory. The second part of the work was focused on the synthesis and the characterization polymeric derivatives bearing in the side chain carbazole or phenylcarbazole moieties linked to the (S)- 2-hydroxy succinimide or the (S)-3-hydroxy pyrrolidinyl ring as chiral groups covalently linked to the main chain through ester bonds. The last objective of this research was to design, synthesize, and characterize multifunctional methacrylic homopolymers and copolymers bearing three distinct functional groups (i.e. azoaromatic, carbazole and chiral group of one single configuration) directly linked in the side chain. This polymeric derivatives could be of potential interest for several advanced application fields, such as optical storage, waveguides, chiroptical switches, chemical photoreceptors, NLO, surface relief gratings, photoconductive materials, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the scenario of depleting fossil fuels, finding new energy technologies and conserving conventional energy resources have become essential to sustain modern civilization. While renewable energies are on the rise, considerable interest has been turned also to reduce energy consumption of conventional devices and appliances, which are often not yet optimized for this purpose. Modern nanotechnology provides a platform to build such devices by using nanomaterials showing exceptional physico-chemical properties. In particular, carbon materials (fullerenes, carbon nanotubes, graphene etc.), which show high thermal and electrical conductivity, aspect ratio, shear strength and chemical/mechanical resistance, are quite promising for a wide range of applications. However, the problem of solubility often hampers their handling and industrial utilization. These limitations can be mitigated by functionalizing carbon nanostructures, either covalently or non covalently, with organic or inorganic compounds. The exo- and endohedral functionalization of carbon nanotubes (CNTs) with organic/inorganic moieties to produce luminescent materials with desired properties are the main focus of this doctoral work. These hybrids have been thoroughly designed and characterized with chemical, microscopic and photophysical analyses. All the materials based on carbon nanostructures described in this thesis are innovative examples of photoactive and luminescent hybrids, and their morphological and photophysical properties help understanding the nature of interactions between the active units. This may prompt the design and fabrication of new functional materials for applications in the fields of optoelectronics and photovoltaics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing market of electrical cars, portable electronics, photovoltaic systems..etc. requires the development of efficient, low-cost, and low environmental impact energy storage devices (ESDs) including batteries and supercapacitors.. Due to their extended charge-discharge cycle, high specific capacitance, and power capabilities supercapacitors are considered among the most attractive ESDs. Over the last decade, research and development in supercapacitor technology have accelerated: thousands of articles have been published in the literature describing the electrochemical properties of the electrode materials and electrolyte in addition to separators and current collectors. Carbon-based supercapacitor electrodes materials have gained increasing attention due to their high specific surface area, good electrical conductivity, and excellent stability in harsh environments, as well as other characteristics. Recently, there has been a surge of interest in activated carbon derived from low-cost abundant sources such as biomass for supercapacitor electrode materials. Also, particular attention was given to a major challenging issue concerning the substitution of organic solutions currently used as electrolytes due to their highest electrochemical stability window even though their high cost, toxicity, and flammability. In this regard, the main objective of this thesis is to investigate the performances of supercapacitors using low cost abundant safe, and low environmental impact materials for electrodes and electrolytes. Several prototypes were constructed and tested using natural resources through optimization of the preparation of appropriate carbon electrodes using agriculture by-products waste or coal (i.e. Argan shell or Anthracite from Jerrada). Such electrodes were tested using several electrolyte formulations (aqueous and water in salt electrolytes) beneficing their non-flammability, lower cost, and environmental impact; the characteristics that provide a promising opportunity to design safer, inexpensive, and environmentally friendly devices compared to organic electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular materials are made by the assembly of specifically designed molecules to obtain bulk structures with desired solid-state properties, enabling the development of materials with tunable chemical and physical properties. These properties result from the interplay of intra-molecular constituents and weak intermolecular interactions. Thus, small changes in individual molecular and electronic structure can substantially change the properties of the material in bulk. The purpose of this dissertation is, thus, to discuss and to contribute to the structure-property relationships governing the electronic, optical and charge transport properties of organic molecular materials through theoretical and computational studies. In particular, the main focus is on the interplay of intra-molecular properties and inter-molecular interactions in organic molecular materials. In my three-years of research activity, I have focused on three major areas: 1) the investigation of isolated-molecule properties for the class of conjugated chromophores displaying diradical character which are building blocks for promising functional materials; 2) the determination of intra- and intermolecular parameters governing charge transport in molecular materials and, 3) the development and application of diabatization procedures for the analysis of exciton states in molecular aggregates. The properties of diradicaloids are extensively studied both regarding their ground state (diradical character, aromatic vs quinoidal structures, spin dynamics, etc.) and the low-lying singlet excited states including the elusive double-exciton state. The efficiency of charge transport, for specific classes of organic semiconductors (including diradicaloids), is investigated by combining the effects of intra-molecular reorganization energy, inter-molecular electronic coupling and crystal packing. Finally, protocols aimed at unravelling the nature of exciton states are introduced and applied to different molecular aggregates. The role of intermolecular interactions and charge transfer contributions in determining the exciton state character and in modulating the H- to J- aggregation is also highlighted.