5 resultados para Markov additive processes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis addresses the issue of generating texts in the style of an existing author, that also satisfy structural constraints imposed by the genre of the text. Although Markov processes are known to be suitable for representing style, they are difficult to control in order to satisfy non-local properties, such as structural constraints, that require long distance modeling. The framework of Constrained Markov Processes allows to precisely generate texts that are consistent with a corpus, while being controllable in terms of rhymes and meter. Controlled Markov processes consist in reformulating Markov processes in the context of constraint satisfaction. The thesis describes how to represent stylistic and structural properties in terms of constraints in this framework and how this approach can be used for the generation of lyrics in the style of 60 differents authors An evaluation of the desctibed method is provided by comparing it to both pure Markov and pure constraint-based approaches. Finally the thesis describes the implementation of an augmented text editor, called Perec. Perec is intended to improve creativity, by helping the user to write lyrics and poetry, exploiting the techniques presented so far.
Resumo:
Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.
Resumo:
The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.
Resumo:
The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.
Resumo:
The project aims to gather an understanding of additive manufacturing and other manufacturing 4.0 techniques with an eyesight for industrialization. First the internal material anisotropy of elements created with the most economically feasible FEM technique was established. An understanding of the main drivers for variability for AM was portrayed, with the focus on achieving material internal isotropy. Subsequently, a technique for deposition parameter optimization was presented, further procedure testing was performed following other polymeric materials and composites. A replicability assessment by means of the use of technology 4.0 was proposed, and subsequent industry findings gathered the ultimate need of developing a process that demonstrate how to re-engineer designs in order to show the best results with AM processing. The latest study aims to apply the Industrial Design and Structure Method (IDES) and applying all the knowledge previously stacked into fully reengineer a product with focus of applying tools from 4.0 era, from product feasibility studies, until CAE – FEM analysis and CAM – DfAM. These results would help in making AM and FDM processes a viable option to be combined with composites technologies to achieve a reliable, cost-effective manufacturing method that could also be used for mass market, industry applications.