5 resultados para Mantle Convection
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work focuses on magnetohydrodynamic (MHD) mixed convection flow of electrically conducting fluids enclosed in simple 1D and 2D geometries in steady periodic regime. In particular, in Chapter one a short overview is given about the history of MHD, with reference to papers available in literature, and a listing of some of its most common technological applications, whereas Chapter two deals with the analytical formulation of the MHD problem, starting from the fluid dynamic and energy equations and adding the effects of an external imposed magnetic field using the Ohm's law and the definition of the Lorentz force. Moreover a description of the various kinds of boundary conditions is given, with particular emphasis given to their practical realization. Chapter three, four and five describe the solution procedure of mixed convective flows with MHD effects. In all cases a uniform parallel magnetic field is supposed to be present in the whole fluid domain transverse with respect to the velocity field. The steady-periodic regime will be analyzed, where the periodicity is induced by wall temperature boundary conditions, which vary in time with a sinusoidal law. Local balance equations of momentum, energy and charge will be solved analytically and numerically using as parameters either geometrical ratios or material properties. In particular, in Chapter three the solution method for the mixed convective flow in a 1D vertical parallel channel with MHD effects is illustrated. The influence of a transverse magnetic field will be studied in the steady periodic regime induced by an oscillating wall temperature. Analytical and numerical solutions will be provided in terms of velocity and temperature profiles, wall friction factors and average heat fluxes for several values of the governing parameters. In Chapter four the 2D problem of the mixed convective flow in a vertical round pipe with MHD effects is analyzed. Again, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the wall. A numerical solution is presented, obtained using a finite element approach, and as a result velocity and temperature profiles, wall friction factors and average heat fluxes are derived for several values of the Hartmann and Prandtl numbers. In Chapter five the 2D problem of the mixed convective flow in a vertical rectangular duct with MHD effects is discussed. As seen in the previous chapters, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the four walls. The numerical solution obtained using a finite element approach is presented, and a collection of results, including velocity and temperature profiles, wall friction factors and average heat fluxes, is provided for several values of, among other parameters, the duct aspect ratio. A comparison with analytical solutions is also provided, as a proof of the validity of the numerical method. Chapter six is the concluding chapter, where some reflections on the MHD effects on mixed convection flow will be made, in agreement with the experience and the results gathered in the analyses presented in the previous chapters. In the appendices special auxiliary functions and FORTRAN program listings are reported, to support the formulations used in the solution chapters.
Resumo:
The research for this PhD project consisted in the application of the RFs analysis technique to different data-sets of teleseismic events recorded at temporary and permanent stations located in three distinct study regions: Colli Albani area, Northern Apennines and Southern Apennines. We found some velocity models to interpret the structures in these regions, which possess very different geologic and tectonics characteristics and therefore offer interesting case study to face. In the Colli Albani some of the features evidenced in the RFs are shared by all the analyzed stations: the Moho is almost flat and is located at about 23 km depth, and the presence of a relatively shallow limestone layer is a stable feature; contrariwise there are features which vary from station to station, indicating local complexities. Three seismic stations, close to the central part of the former volcanic edifice, display relevant anisotropic signatures with symmetry axes consistent with the emplacement of the magmatic chamber. Two further anisotropic layers are present at greater depth, in the lower crust and the upper mantle, respectively, with symmetry axes directions related to the evolution of the volcano complex. In Northern Apennines we defined the isotropic structure of the area, finding the depth of the Tyrrhenian (almost 25 km and flat) and Adriatic (40 km and dipping underneath the Apennines crests) Mohos. We determined a zone in which the two Mohos overlap, and identified an anisotropic body in between, involved in the subduction and going down with the Adiratic Moho. We interpreted the downgoing anisotropic layer as generated by post-subduction delamination of the top-slab layer, probably made of metamorphosed crustal rocks caught in the subduction channel and buoyantly rising toward the surface. In the Southern Apennines, we found the Moho depth for 16 seismic stations, and highlighted the presence of an anisotropic layer underneath each station, at about 15-20 km below the whole study area. The moho displays a dome-like geometry, as it is shallow (29 km) in the central part of the study area, whereas it deepens peripherally (down to 45 km); the symmetry axes of anisotropic layer, interpreted as a layer separating the upper and the lower crust, show a moho-related pattern, indicated by the foliation of the layer which is parallel to the Moho trend. Moreover, due to the exceptional seismic event occurred on April 6th next to L’Aquila town, we determined the Vs model for two station located next to the epicenter. An extremely high velocity body is found underneath AQU station at 4-10 km depth, reaching Vs of about 4 km/s, while this body is lacking underneath FAGN station. We compared the presence of this body with other recent works and found an anti-correlation between the high Vs body, the max slip patches and earthquakes distribution. The nature of this body is speculative since such high velocities are consistent with deep crust or upper mantle, but can be interpreted as a as high strength barrier of which the high Vs is a typical connotation.
Resumo:
The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.
Resumo:
Extreme weather events related to deep convection are high-impact critical phenomena whose reliable numerical simulation is still challenging. High-resolution (convection-permitting) modeling setups allow to switch off physical parameterizations accountable for substantial errors in convection representation. A new convection-permitting reanalysis over Italy (SPHERA) has been produced at ARPAE to enhance the representation and understanding of extreme weather situations. SPHERA is obtained through a dynamical downscaling of the global reanalysis ERA5 using the non-hydrostatic model COSMO at 2.2 km grid spacing over 1995-2020. This thesis aims to verify the expectations placed on SPHERA by analyzing two weather phenomena that are particularly challenging to simulate: heavy rainfall and hail. A quantitative statistical analysis over Italy during 2003-2017 for daily and hourly precipitation is presented to compare the performance of SPHERA with its driver ERA5 considering the national network of rain gauges as reference. Furthermore, two extreme precipitation events are deeply investigated. SPHERA shows a quantitative added skill over ERA5 for moderate to severe and rapid accumulations in terms of adherence to the observations, higher detailing of the spatial fields, and more precise temporal matching. These results prompted the use of SPHERA for the investigation of hailstorms, for which the combination of multiple information is crucial to reduce the substantial uncertainties permeating their understanding. A proxy for hail is developed by combining hail-favoring environmental numerical predictors with observations of ESWD hail reports and satellite overshooting top detections. The procedure is applied to the extended summer season (April-October) of 2016-2018 over the whole SPHERA spatial domain. The results indicate maximum hail likelihood over pre-Alpine regions and the northern Adriatic sea around 15 UTC in June-July, in agreement with recent European hail climatologies. The method demonstrates enhanced performance in case of severe hail occurrences and the ability to separate between ambient signatures depending on hail severity.