6 resultados para Mammal Phylogeny
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Primula apennina Widmer is endemic to the North Apennines (Italy). ISSR were used to detect the genetic diversity within and among six populations representative of the species distribution range. High levels of genetic diversity were revealed both at population (PPB = 75.92%, HS = 0.204, Hpop = 0.319) and at species level (PPB = 96.95%, HT = 0.242, Hsp = 0.381). Nei gene diversity statistics (15.7%), Shannon diversity index (16.3%) and AMOVA (14%) detected a moderate level of interpopulation diversity. Principal coordinate and bayesian analyses clustered the populations in three major groups along a geographic gradient. The correlation between genetic and geographic distances was positive (Mantel test, r = 0.232). All together, these analyses revealed a weak but significant spatial genetic structure in P. apennina, with gene flow acting as a homogenizing force that prevents a stronger differentiation of populations. Conservation measures are suggested based on the observed pattern of genetic variability. P. apennina belongs to Primula subsect. Euauricula which includes 15 species distributed on the whole Alps and Apennines. A phylogenetic analysis was carried out using AFLP markers in order both to clarify the relationships among the species of subsection Euauricula that remained unresolved in previous works and to make some hypoteses on their evolutive dynamics. NJ, PCO and BAPS analyses strongly confirmed the monophyly of P. subsect. Euauricula and all the species form strongly supported clades. NJ tree topology suggested a simultaneous fragmentations of ancestral species in a large number of isolated populations that survived in refugia along the unglaciated margins of the Alps in response to the Pleistocene climatic oscillations.
Resumo:
The aim of this thesis is to detect the phylogeny and the population dynamics of the European termites of the genera Reticulitermes and Kalotermes, by the use of different mitochondrial (16S, COI/tRNA/COII, CR) and nuclear (microsatellites and Inter-SINE) molecular markers. In the phylogenetic analyses, the obtained results have well defined the cladogenetic events that generated the nowadays species biodiversity of the genus Reticulitermes, while the analysis of the Kalotermes flavicollis taxon showed the presence of at least four genetic clades, defined on the basis of the geographical distance. The second part of the thesis is centred on the population dynamics of two species: Reticulitermes urbis and Kalotermes flavicollis. The first species, native of the Balkans, is known to be present in some cities of Italy and France. I’ve analyzed the colony genetic structure of the introduced population of Bagnacavallo (RA, Italy), using nine microsatellite loci. The obtained results are in accordance with those obtained from another population in France: this species in fact confirms its invasive and infestation capacities. The analysis of the natural population of K. flavicollis, performed with a combination of mitochondrial (control region) and nuclear (microsatellites and I-SINE) markers, clearly evidenced the presence of two genetic lineages that coexist in the same area. Moreover, results clearly indicate that the cross-breeding is allowed. Finally, the whole results are discussed in a comparative view to better understand the differences in ecology, evolutionary dynamics and colony social structure between these two genera.
Resumo:
In this study we have analysed the genetic variability in ca. 700 samples belonging to six species of genus Lepus using maternal and biparental molecular markers (mitochondrial DNA, microsatellites, Single Nucleotide Polimorphisms). We aimed to reconstruct the phylogenetic relationships of species of hares living in Europe, and assess the occurrence of hybridization between the European hare Lepus europaeus and the Italian hare Lepus corsicanus. Results showed a deep genetic differentiation and absence of hybridization between L. corsicanus and L. europaeus, confirming that they are distinct and distantly related biological species. In contrast, we showed small genetic distances and a close phylogenetic relationship between the Italian hare and Cantabrian hare L. castroviejoi, which suggest a deeper evaluation of their taxonomic status. Populations of L. corsicanus are geographically differentiated. In particular, the peninsular and Sicilian populations of Italian hares are sharply genetically distinct, which calls for avoiding any translocation between Italy and Sicily. Information on genetic variability and population structure is being used to implement the Italian Action Plan for L. corsicanus.
Resumo:
The main scope of my PhD is the reconstruction of the large-scale bivalve phylogeny on the basis of four mitochondrial genes, with samples taken from all major groups of the class. To my knowledge, it is the first attempt of such a breadth in Bivalvia. I decided to focus on both ribosomal and protein coding DNA sequences (two ribosomal encoding genes -12s and 16s -, and two protein coding ones - cytochrome c oxidase I and cytochrome b), since either bibliography and my preliminary results confirmed the importance of combined gene signals in improving evolutionary pathways of the group. Moreover, I wanted to propose a methodological pipeline that proved to be useful to obtain robust results in bivalves phylogeny. Actually, best-performing taxon sampling and alignment strategies were tested, and several data partitioning and molecular evolution models were analyzed, thus demonstrating the importance of molding and implementing non-trivial evolutionary models. In the line of a more rigorous approach to data analysis, I also proposed a new method to assess taxon sampling, by developing Clarke and Warwick statistics: taxon sampling is a major concern in phylogenetic studies, and incomplete, biased, or improper taxon assemblies can lead to misleading results in reconstructing evolutionary trees. Theoretical methods are already available to optimize taxon choice in phylogenetic analyses, but most involve some knowledge about genetic relationships of the group of interest, or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications. The method I proposed measures the "phylogenetic representativeness" of a given sample or set of samples and it is based entirely on the pre-existing available taxonomy of the ingroup, which is commonly known to investigators. Moreover, it also accounts for instability and discordance in taxonomies. A Python-based script suite, called PhyRe, has been developed to implement all analyses.
Resumo:
This research focuses on taxonomy, phylogeny and reproductive ecology of Gentiana lutea. L.. Taxonomic analysis is a critical step in botanical studies, as it is necessary to recognize taxonomical unit. Herbarium specimens were observed to assess the reliability of several subspecies-diagnostic characters. The analysis of G. lutea genetic variability and the comparison with that of the other species of sect. Gentiana were performed to elucidate phylogenetic relationships among G. lutea subspecies and to propose a phylogenetic hypothesis for the evolution and the colonization dynamics of the section. Appropriate scientific information is critical for the assessment of species conservation status and for effective management plans. I carried out field work on five natural populations and performed laboratory analyses on specific critical aspects, with special regard to G. lutea breeding system and type and efficiency of plant-pollinator system. Bracts length is a reliable character to identify subsp. vardjanii, however it is not exclusive, hence to clearly identify subsp. vardjanii, other traits have to be considered. The phylogenetic hypotheses obtained from nuclear and chloroplast data are not congruent. Nuclear markers show a monophyly of sect. Gentiana, a strongly species identity of G. lutea and clear genetic identity of subsp. vardjanii. The little information emerging from plastid markers indicate a weak signal of hybridization and incomplete sorting of ancestral lineages. G. lutea shows a striking variation in intra-floral dichogamy probably evolved to reduce pollen-stigma interference. Although the species is partially self-compatible, pollen vectors are necessary for a successful reproduction, and moreover it shows a strong inbreeding depression. G. lutea is a generalist species: within its spectrum of visitors is possible to recognize "nectar thieves" and pollinators with sedentary or dynamic behaviour. Pollen limitation is frequent and it could be mainly explained by poor pollen quality.