3 resultados para Malmberg, Jakob Johan

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurodegenerative disorders that affect humans and mammals. Creutzfeldt-Jakob disease (CJD), the most common TSE in humans, can be sporadic (sCJD), genetic (gCJD), or acquired by infection. All TSEs are characterised by the accumulation of PrPSc, a misfolded form of the cellular protein PrPC. PrPSc is insoluble in detergents, partially resistant to proteolysis and shows a highly enriched β-sheet secondary structure. Six clinico-pathological phenotypes of sCJD have been characterized which correlate at the molecular level with two types (1 or 2) of PrPSc with distinctive physicochemical properties and the genotype at the polymorphic (methionine or valine) codon 129 of the prion protein gene. According to the protein-only hypothesis, which postulates that prions are composed exclusively of PrPSc, the strains of prions that are largely responsible for the wide spectrum of TSE phenotypes are enciphered in PrPSc conformation. In support to this view, studies mainly conducted in experimental scrapie, have shown that several prion strains can be identified based on distinguishing PrPSc biochemical properties. To further contribute to the understanding of the molecular basis of strains and to develop more sensitive strain typing assays in humans we have analyzed PrPSc biochemical properties in two experimental setting. In the first we compared the size of the core after protease digestion and the glycoform pattern of PrPSc before and after transmission of human prions to non human primates or bank voles, whereas in the second we analyzed the conformational stability of PrPSc associated with sCJD, vCJD or fCJD using guanidine hydrochloride (GdnHCl) as denaturant. Combining the results of the two studies, we were able to distinguish five human strains for at least one biochemical property. The present data extend our knowledge about the extent of strain variation and its relationship with PrPSc properties in human TSEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first study was designed to assess whether the involvement of the peripheral nervous system (PNS) belongs to the phenotypic spectrum of sporadic Creutzfeldt-Jakob disease (sCJD). To this aim, we reviewed medical records of 117 sCJDVV2, 65 sCJDMV2K, and 121 sCJDMM(V)1 subjects for symptoms/signs and neurophysiological data. We looked for the presence of PrPSc in postmortem PNS samples from 14 subjects by western blotting and real-time quaking-induced conversion (RT-QuIC) assay. Seventy-five (41.2%) VV2-MV2K patients, but only 11 (9.1%) MM(V)1, had symptoms/signs suggestive of PNS involvement and neuropathy was documented in half of the VV2-MV2K patients tested. RT-QuIC was positive in all PNS samples, whereas western blotting detected PrPSc in the sciatic nerve in only one VV2 and one MV2K. These results support the conclusion that peripheral neuropathy, likely related to PrPSc deposition, belongs to the phenotypic spectrum of sCJDMV2K and VV2, the two variants linked to the V2 strain. The second study aimed to characterize the genetic/molecular determinants of phenotypic variability in genetic CJD (gCJD). To this purpose, we compared 157 cases of gCJD to 300 of sCJD. We analyzed: demographic aspects, neurological symptoms/signs, histopathologic features and biochemical characteristics of PrPSc. The results strongly indicated that the clinicopathological phenotypes of gCJD largely overlap with those of sCJD and that the genotype at codon 129 in cis with the mutation (i.e. haplotype) contributes more than the latter to the disease phenotype. Some mutations, however, cause phenotypic variations including haplotype-specific patterns of PrPSc deposition such as the “dense” synaptic pattern (E200K-129M), the intraneuronal dots (E200K-129V), and the linear stripes perpendicular to the surface in the molecular layer of cerebellum (OPRIs-129M). Overall, these results suggest that in gCJD PRNP mutations do not cause the emergence of novel prion strains, but rather confer increased susceptibility to the disease in conjunction with “minor” clinicopathological variations.