2 resultados para Magnetic linear dichroism

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional model to analyze the distribution of magnetic fields in the airgap of a PM electrical machines is studied. A numerical algorithm for non-linear magnetic analysis of multiphase surface-mounted PM machines with semi-closed slots is developed, based on the equivalent magnetic circuit method. By using a modular structure geometry, whose the basic element can be duplicated, it allows to design whatever typology of windings distribution. In comparison to a FEA, permits a reduction in computing time and to directly changing the values of the parameters in a user interface, without re-designing the model. Output torque and radial forces acting on the moving part of the machine can be calculated. In addition, an analytical model for radial forces calculation in multiphase bearingless Surface-Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. It allows to predict amplitude and direction of the force, depending on the values of torque current, of levitation current and of rotor position. It is based on the space vectors method, letting the analysis of the machine also during transients. The calculations are conducted by developing the analytical functions in Fourier series, taking all the possible interactions between stator and rotor mmf harmonic components into account and allowing to analyze the effects of electrical and geometrical quantities of the machine, being parametrized. The model is implemented in the design of a control system for bearingless machines, as an accurate electromagnetic model integrated in a three-dimensional mechanical model, where one end of the motor shaft is constrained to simulate the presence of a mechanical bearing, while the other is free, only supported by the radial forces developed in the interactions between magnetic fields, to realize a bearingless system with three degrees of freedom. The complete model represents the design of the experimental system to be realized in the laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gleno-humeral joint (GHJ) is the most mobile joint of the human body. This is related to theincongr uence between the large humeral head articulating with the much smaller glenoid (ratio 3:1). The GHJ laxity is the ability of the humeral head to be passively translated on the glenoid fossa and, when physiological, it guarantees the normal range of motion of the joint. Three-dimensional GHJ linear displacements have been measured, both in vivo and in vitro by means of different instrumental techniques. In vivo gleno-humeral displacements have been assessed by means of stereophotogrammetry, electromagnetic tracking sensors, and bio-imaging techniques. Both stereophotogrammetric systems and electromagnetic tracking devices, due to the deformation of the soft tissues surrounding the bones, are not capable to accurately assess small displacements, such as gleno-humeral joint translations. The bio-imaging techniques can ensure for an accurate joint kinematic (linear and angular displacement) description, but, due to the radiation exposure, most of these techniques, such as computer tomography or fluoroscopy, are invasive for patients. Among the bioimaging techniques, an alternative which could provide an acceptable level of accuracy and that is innocuous for patients is represented by magnetic resonance imaging (MRI). Unfortunately, only few studies have been conducted for three-dimensional analysis and very limited data is available in situations where preset loads are being applied. The general aim of this doctoral thesis is to develop a non-invasive methodology based on open-MRI for in-vivo evaluation of the gleno-humeral translation components in healthy subjects under the application of external loads.