12 resultados para Macro and micro nutrients

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi è dedicata alla qualità dell'alimento ittico in tre delle sue possibili accezioni. Dopo aver spiegato il complicato rapporto del consumatore con gli alimenti ittici e come l'Unione Europea abbia cercato di fare chiarezza al riguardo, gli argomenti di discussione saranno: Autenticazione d'origine La polpa di 160 esemplari di spigola (Dicentrachus labrax), suddivisi tra selvatici, allevati intensivamente e allevati estensivamente, provenienti dall'Italia e dall'estero per un totale di 18 fonti indagate, è stati analizzata individualmente per caratterizzarne la componente lipidica, isotopica e minerale e verificare le potenzialità di queste informazioni ai fini della autenticazione di origine in senso lato. Stima della Freshness Quality Numerosi lotti di seppia (Sepia officinalis), nasello (Merluccius merluccius) e triglia di fango (Mullus barbatus) sono stati sottoposti a due possibili modalità di stoccaggio sotto ghiaccio fondente, per indagare come, nell’arco della loro vita commerciale, ne evolvessero importanti connotati chimici (cataboliti dell’ATP e loro rapporti), fisici (proprietà dielettriche dei tessuti) e sensoriali (Quality Index Methods specie-specifici. Studio del profilo nutrizionale La componente lipidica di numerosi lotti di mazzancolla (Penaeus kerathurus), canocchia (Squilla mantis) e seppia (Sepia officinalis) è stata caratterizzata allo stato crudo e dopo cottura secondo tecniche “dedicate” per stabilire il contributo di queste matrici come fonte di acidi grassi polinsaturi della serie omega 3 e per pervenire alla determinazione dei loro coefficienti di ritenzione vera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three finfish species frequently caught in the waters of the Gulf of Manfredonia (Apulia, Italy) were studied in order to know how the flesh composition (proximate, fatty acid, macro- and micro- element contents) could be affected by the season effect. The species we examined were European hake (Merluccius merluccius), chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus), which were analysed at the raw state in three catch season and after cooking in two catch season. More precisely, European hake and chub mackerel caught during winter, summer and fall were analysed at the raw state. The composition of the flesh of grilled European hake and chub mackerel was study on fish caught in winter and fall. Horse mackerel of summer and winter catches were analysed both at the raw and grilled state. Furthermore, an overall sensory profile was outlined for each species in two catch season and the relevant spider web diagrams compared. On the whole, two hundred and eighty fish were analysed during this research project in order to obtain a nutritional profile of the three species. One hundred and fifty was the overall number of specimens used to create complete sensory profiles and compare them among the species. The three finfish species proved to be quite interesting for their proximate, fatty acids, macro- and micro-element contents. Nutritional and sensory changes occurred as seasons elapsed for chub and horse mackerel only. A high variability of flesh composition seemed to characterise these two species. European hake confirmed its mild sensory profile and good nutritional characteristics, which were not affected by any season effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic differences among human groups can be ascribed both to the broad-scale extents of pre-historical and historical migrations and to the fine-scale impacts of socio-cultural and geographic heterogeneity. In this thesis, the genetic information provided by uniparental markers were exploited to address different aspects of the Italian population history, by combining macro- and micro-geographic investigations at different spatial and temporal scales. To firstly assess the overall Italian variability, Y-chromosome and mtDNA markers were deeply typed in ~900 individuals from continental Italy, Sicily and Sardinia. Sex-biased patterns and contrasting demographic histories were observed for males and females. Differential European and Mediterranean contributions were invoked to explain the paternal genetic sub-structure observed in peninsular Italy, compared to the homogeneous maternal genetic landscape. If Neolithic showed to be one principal determinant of the detected paternal structure, local insights into specific Italian regional contexts highlighted the importance of Post-Neolithic contributions. Among them, migrations from the Balkans (particularly Greece) during late Metal Ages, played a relevant role in the cultural and genetic transitions occurred in Sicily and Southern Italy. On a finer geographic and temporal perspective, the more recent layers of Italian genetic history and some aspects of the gene-culture interaction were assessed by exploring the genetic variability within two “marginal populations”: Arbereshe of Southern Italy and Partecipanza in Northern Italy. The Arbereshe are Albanian-speaking communities settled in Sicily and Calabria since the end of Middle Ages. Despite sharing common genetic and cultural backgrounds, these groups revealed diverging micro-evolutionary histories, implying different founding events and different patterns of cultural isolation and local admixture. Partecipanza is an idiosyncratic institution of Medieval origin aimed at sharing and devolving collective lands. This case-study exemplified that socio-economic stratification within the same population may induce sex-biased genetic structuring and the maintenance of otherwise hidden historical genetic traces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a new approach for the design and fabrication of bond wire magnetics for power converter applications by using standard IC gold bonding wires and micro-machined magnetic cores. It shows a systematic design and characterization study for bond wire transformers with toroidal and race-track cores for both PCB and silicon substrates. Measurement results show that the use of ferrite cores increases the secondary self-inductance up to 315 µH with a Q-factor up to 24.5 at 100 kHz. Measurement results on LTCC core report an enhancement of the secondary self-inductance up to 23 µH with a Q-factor up to 10.5 at 1.4 MHz. A resonant DC-DC converter is designed in 0.32 µm BCD6s technology at STMicroelectronics with a depletion nmosfet and a bond wire micro-transformer for EH applications. Measures report that the circuit begins to oscillate from a TEG voltage of 280 mV while starts to convert from an input down to 330 mV to a rectified output of 0.8 V at an input of 400 mV. Bond wire magnetics is a cost-effective approach that enables a flexible design of inductors and transformers with high inductance and high turns ratio. Additionally, it supports the development of magnetics on top of the IC active circuitry for package and wafer level integrations, thus enabling the design of high density power components. This makes possible the evolution of PwrSiP and PwrSoC with reliable highly efficient magnetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Székesfehérvár Ruin Garden is a unique assemblage of monuments belonging to the cultural heritage of Hungary due to its important role in the Middle Ages as the coronation and burial church of the Kings of the Hungarian Christian Kingdom. It has been nominated for “National Monument” and as a consequence, its protection in the present and future is required. Moreover, it was reconstructed and expanded several times throughout Hungarian history. By a quick overview of the current state of the monument, the presence of several lithotypes can be found among the remained building and decorative stones. Therefore, the research related to the materials is crucial not only for the conservation of that specific monument but also for other historic structures in Central Europe. The current research is divided in three main parts: i) description of lithologies and their provenance, ii) physical properties testing of historic material and iii) durability tests of analogous stones obtained from active quarries. The survey of the National Monument of Székesfehérvár, focuses on the historical importance and the architecture of the monument, the different construction periods, the identification of the different building stones and their distribution in the remaining parts of the monument and it also included provenance analyses. The second one was the in situ and laboratory testing of physical properties of historic material. As a final phase samples were taken from local quarries with similar physical and mineralogical characteristics to the ones used in the monument. The three studied lithologies are: fine oolitic limestone, a coarse oolitic limestone and a red compact limestone. These stones were used for rock mechanical and durability tests under laboratory conditions. The following techniques were used: a) in-situ: Schmidt Hammer Values, moisture content measurements, DRMS, mapping (construction ages, lithotypes, weathering forms) b) laboratory: petrographic analysis, XRD, determination of real density by means of helium pycnometer and bulk density by means of mercury pycnometer, pore size distribution by mercury intrusion porosimetry and by nitrogen adsorption, water absorption, determination of open porosity, DRMS, frost resistance, ultrasonic pulse velocity test, uniaxial compressive strength test and dynamic modulus of elasticity. The results show that initial uniaxial compressive strength is not necessarily a clear indicator of the stone durability. Bedding and other lithological heterogeneities can influence the strength and durability of individual specimens. In addition, long-term behaviour is influenced by exposure conditions, fabric and, especially, the pore size distribution of each sample. Therefore, a statistic evaluation of the results is highly recommended and they should be evaluated in combination with other investigations on internal structure and micro-scale heterogeneities of the material, such as petrographic observation, ultrasound pulse velocity and porosimetry. Laboratory tests used to estimate the durability of natural stone may give a good guidance to its short-term performance but they should not be taken as an ultimate indication of the long-term behaviour of the stone. The interdisciplinary study of the results confirms that stones in the monument show deterioration in terms of mineralogy, fabric and physical properties in comparison with quarried stones. Moreover stone-testing proves compatibility between quarried and historical stones. Good correlation is observed between the non-destructive-techniques and laboratory tests results which allow us to minimize sampling and assessing the condition of the materials. Concluding, this research can contribute to the diagnostic knowledge for further studies that are needed in order to evaluate the effect of recent and future protective measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies on the morphology, molecular orientation, device performance, substrate nature and growth parameter dependence have been carried out since the proposal of Sexithiophene (6T) for organic electronics [ ] However, these studies were mostly performed on films thicker than 20nm and without specifically addressing the relationship between morphology and molecular orientation within the nano and micro structures of ultrathin films of 0-3 monolayers. In 2004, the observation that in OFETs only the first few monolayers at the interface in contact with the gate insulator contribute to the charge transport [ ], underlined the importance to study submonolayer films and their evolution up to a few monolayers of thickness with appropriate experimental techniques. We present here a detailed Non-contact Atomic Force Microscopy and Scanning Tunneling Microscopy study on various substrates aiming at the investigation of growth mechanisms. Most reported similar studies are performed on ideal metals in UHV. However it is important to investigate the details of organic film growth on less ideal and even technological surfaces and device testpatterns. The present work addresses the growth of ultra thin organic films in-situ and quasi real-time by NC-AFM. An organic effusion cell is installed to evaporate the organic material directly onto the SPM sample scanning stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

III-nitrides are wide-band gap materials that have applications in both electronics and optoelectronic devices. Because to their inherent strong polarization properties, thermal stability and higher breakdown voltage in Al(Ga,In)N/GaN heterostructures, they have emerged as strong candidates for high power high frequency transistors. Nonetheless, the use of (Al,In)GaN/GaN in solid state lighting has already proved its success by the commercialization of light-emitting diodes and lasers in blue to UV-range. However, devices based on these heterostructures suffer problems associated to structural defects. This thesis primarily focuses on the nanoscale electrical characterization and the identification of these defects, their physical origin and their effect on the electrical and optical properties of the material. Since, these defects are nano-sized, the thesis deals with the understanding of the results obtained by nano and micro-characterization techniques such as atomic force microscopy(AFM), current-AFM, scanning kelvin probe microscopy (SKPM), electron beam induced current (EBIC) and scanning tunneling microscopy (STM). This allowed us to probe individual defects (dislocations and cracks) and unveil their electrical properties. Taking further advantage of these techniques,conduction mechanism in two-dimensional electron gas heterostructures was well understood and modeled. Secondarily, origin of photoluminescence was deeply investigated. Radiative transition related to confined electrons and photoexcited holes in 2DEG heterostructures was identified and many body effects in nitrides under strong optical excitations were comprehended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory Bowel Diseases (IBD) are intestinal chronic relapsing diseases which ethiopathogenesis remains uncertain. Several group have attempted to study the role of factors involved such as genetic susceptibility, environmental factors such as smoke, diet, sex, immunological factors as well as the microbioma. None of the treatments available satisfy several criteria at the same time such as safety, long-term remission, histopatological healing, and specificity. We used two different approaches for the development of new therapeutic treatment for Inflammatory Bowel Disease. The first is focused on the understanding of the potential role of functional food and nutraceuticals nutrients in the treatment of IBD. To do so, we investigated the role of Curcuma longa in the treatment of chemical induced colitis in mice model. Since Curcma Longa has been investigated for its antinflammatory role related to the TNFα pathway as well investigators have reported few cases of patients with ulcerative colites treated with this herbs, we harbored the hypothesis of a role of Curcuma Longa in the treatment f IBD as well as we decided to assess its role in intestinal motility. The second part is based on an immunological approach to develop new drugs to induce suppression in Crohn’s disease or to induce mucosa immunity such as in colonrectal tumor. The main idea behind this approach is that we could manipulate relevant cell-cell interactions using synthetic peptides. We demonstrated the role of the unique interaction between molecules expressed on intestinal epithelial cells such as CD1d and CEACAM5 and on CD8+ T cells. In normal condition this interaction has a role for the expansion of the suppressor CD8+ T cells. Here, we characterized this interaction, we defined which are the epitope involved in the binding and we attempted to develop synthetic peptides from the N domain of CEACAM5 in order to manipulate it.