14 resultados para MUON-PROTON
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The thesis main topic is the determination of the vertical component of the atmospheric muon flux as a function of the sea depth at the ANTARES site. ANTARES is a Cherenkov neutrino telescope placed at 2500m depth in the Mediterranean Sea at 40 km from the southern cost of France. In order to retrieve back the physical flux from the experimental data a deconvolution algorithm has been perform which takes into consideration the trigger inefficiensies and the reconstruction errors on the zenith angle. The obtained results are in good agreement with other ANTARES indipendent analysis.
Resumo:
In this thesis we describe in detail the Monte Carlo simulation (LVDG4) built to interpret the experimental data collected by LVD and to measure the muon-induced neutron yield in iron and liquid scintillator. A full Monte Carlo simulation, based on the Geant4 (v 9.3) toolkit, has been developed and validation tests have been performed. We used the LVDG4 to determine the active vetoing and the shielding power of LVD. The idea was to evaluate the feasibility to host a dark matter detector in the most internal part, called Core Facility (LVD-CF). The first conclusion is that LVD is a good moderator, but the iron supporting structure produce a great number of neutrons near the core. The second conclusions is that if LVD is used as an active veto for muons, the neutron flux in the LVD-CF is reduced by a factor 50, of the same order of magnitude of the neutron flux in the deepest laboratory of the world, Sudbury. Finally, the muon-induced neutron yield has been measured. In liquid scintillator we found $(3.2 \pm 0.2) \times 10^{-4}$ n/g/cm$^2$, in agreement with previous measurements performed at different depths and with the general trend predicted by theoretical calculations and Monte Carlo simulations. Moreover we present the first measurement, in our knowledge, of the neutron yield in iron: $(1.9 \pm 0.1) \times 10^{-3}$ n/g/cm$^2$. That measurement provides an important check for the MC of neutron production in heavy materials that are often used as shield in low background experiments.
Resumo:
In the thesis is presented the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam, a muon neutrino beam produced at CERN. The OPERA detector observes muon neutrinos 730 km away from the source. Previous measurements of the neutrino velocity have been performed by other experiments. Since the OPERA experiment aims the direct observation of muon neutrinos oscillations into tau neutrinos, a higher energy beam is employed. This characteristic together with the higher number of interactions in the detector allows for a measurement with a much smaller statistical uncertainty. Moreover, a much more sophisticated timing system (composed by cesium clocks and GPS receivers operating in “common view mode”), and a Fast Waveform Digitizer (installed at CERN and able to measure the internal time structure of the proton pulses used for the CNGS beam), allows for a new measurement with a smaller systematic error. Theoretical models on Lorentz violating effects can be investigated by neutrino velocity measurements with terrestrial beams. The analysis has been carried out with blind method in order to guarantee the internal consistency and the goodness of each calibration measurement. The performed measurement is the most precise one done with a terrestrial neutrino beam, the statistical accuracy achieved by the OPERA measurement is about 10 ns and the systematic error is about 20 ns.
Resumo:
The atmospheric muon charge ratio, defined as the number of positive over negative charged muons, is an interesting quantity for the study of high energy hadronic interactions in atmosphere and the nature of the primary cosmic rays. The measurement of the charge ratio in the TeV muon energy range allows to study the hadronic interactions in kinematic regions not yet explored at accelerators. The OPERA experiment is a hybrid electronic detector/emulsion apparatus, located in the underground Gran Sasso Laboratory, at an average depth of 3800 meters water equivalent (m.w.e.). OPERA is the first large magnetized detector that can measure the muon charge ratio at the LNGS depth, with a wide acceptance for cosmic ray muons coming from above. In this thesis, the muon charge ratio is measured using the spectrometers of the OPERA detector in the highest energy region. The charge ratio was computed separately for single and for multiple muon events, in order to select different primary cosmic ray samples in energy and composition. The measurement as a function of the surface muon energy is used to infer parameters characterizing the particle production in atmosphere, that will be used to constrain Monte Carlo predictions. Finally, the experimental results are interpreted in terms of cosmic ray and particle physics models.
Resumo:
The procedure for event location in OPERA ECC has been optimazed for penetrating particles while is less efficient for electrons. For this reason new procedure has been defined in order to recover event with an electromagnetic shower in its final state not located with the standard one. The new procedure include the standard procedure during which several electromagnetic shower hint has been defined by means of the available data. In case the event is not located, the presence of an electromagnetic shower hint trigger a dedicated procedure. The old and new location procedure has been then simulated in order to obtain the standard location efficiency and the possible gain due to the new one for the events with electromagnetic shower. Finally a Data-MC comparison has been performed for the 2008 and 2009 runs for what concern the NC in order to validate the Monte Carlo. Then the expected electron neutrino interactions for the 2008 and 2009 runs has been evaluated and compared with the available data.
Resumo:
In this thesis, my work in the Compact Muon Solenoid (CMS) experiment on the search for the neutral Minimal Supersymmetric Standard Model (MSSM) Higgs decaying into two muons is presented. The search is performed on the full data collected during the years 2011 and 2012 by CMS in proton-proton collisions at CERN Large Hadron Collider (LHC). The MSSM is explored within the most conservative benchmark scenario, m_h^{max}, and within its modified versions, m_h^{mod +} and m_h^{mod -}. The search is sensitive to MSSM Higgs boson production in association with a b\bar{b} quark pair and to the gluon-gluon fusion process. In the m_h^{max} scenario, the results exclude values of tanB larger than 15 in the m_A range 115-200 GeV, and values of tanB greater than 30 in the m_A range up to 300 GeV. There are no significant differences in the results obtained within the three different scenarios considered. Comparisons with other neutral MSSM Higgs searches are shown.
Resumo:
In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, using experimentally reliable technologies in order to be able to test such a system as soon as possible. In this thesis, different transport lines are analyzed. The first is based on a high field pulsed solenoid, some collimators and, for perfect filtering and post-acceleration, a high field high frequency compact linear accelerator, originally designed to accelerate a 30 MeV beam extracted from a cyclotron. The second one is based on a quadruplet of permanent magnetic quadrupoles: thanks to its greater simplicity and reliability, it has great interest for experiments, but the effectiveness is lower than the one based on the solenoid; in fact, the final beam intensity drops by an order of magnitude. An additional sensible decrease in intensity is verified in the third case, where the energy selection is achieved using a chicane, because of its very low efficiency for off-axis protons. The proposed schemes have all been analyzed with 3D simulations and all the significant results are presented. Future experimental work based on the outcome of this thesis can be planned and is being discussed now.
Resumo:
The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.
Resumo:
Proton radiation therapy is a form of external radiation that uses charged particles which have distinct physical advantages to deliver the majority of its dose in the target while minimizing the dose of radiation to normal tissues. In children who are particularly susceptible even at low and medium doses of radiation, the significant reduction of integral dose can potentially mitigate the incidence of side effects and improve quality of life. The aim of the first part of the thesis is to describe the physical and radiobiological properties of protons, the Proton Therapy Center of Trento (TCPT) active for clinical purpose since 2014, which use the most recent technique called active pencil beam scanning. The second part of the thesis describes the preliminary clinical results of 23 pediatric patients with central nervous system tumors as well as of two aggressive pediatric meningiomas treated with pencil beam scanning. All the patients were particularly well-suited candidates for proton therapy (PT) for possible benefits in terms of survival and incidence of acute and late side effects. We reported also a multicentric experience of 27 medulloblastoma patients (median age 6 years, M/F ratio 13/14) treated between 2015 and 2020 at TPTC coming from three Pediatric oncology centers: Bologna, Florence, and Ljubljana, with a focus on clinical results and toxicities related to radiotherapy (RT). Proton therapy was associated with mostly mild acute and late adverse effects and no cases of CNS necrosis or high grade of neuroradiological abnormailities. Comparable rates of survival and local control were obtained to those achievable with conventional RT. Finally, we performed a systematic review to specifically address the safety of PT for pediatric CNS patients, late side effects and clinical effectiveness after PT in this patient group.
Resumo:
The Standard Model (SM) of particle physics predicts the existence of a Higgs field responsible for the generation of particles' mass. However, some aspects of this theory remain unsolved, supposing the presence of new physics Beyond the Standard Model (BSM) with the production of new particles at a higher energy scale compared to the current experimental limits. The search for additional Higgs bosons is, in fact, predicted by theoretical extensions of the SM including the Minimal Supersymmetry Standard Model (MSSM). In the MSSM, the Higgs sector consists of two Higgs doublets, resulting in five physical Higgs particles: two charged bosons $H^{\pm}$, two neutral scalars $h$ and $H$, and one pseudoscalar $A$. The work presented in this thesis is dedicated to the search of neutral non-Standard Model Higgs bosons decaying to two muons in the model independent MSSM scenario. Proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV are used, corresponding to an integrated luminosity of $35.9\ \text{fb}^{-1}$. Such search is sensitive to neutral Higgs bosons produced either via gluon fusion process or in association with a $\text{b}\bar{\text{b}}$ quark pair. The extensive usage of Machine and Deep Learning techniques is a fundamental element in the discrimination between signal and background simulated events. A new network structure called parameterised Neural Network (pNN) has been implemented, replacing a whole set of single neural networks trained at a specific mass hypothesis value with a single neural network able to generalise well and interpolate in the entire mass range considered. The results of the pNN signal/background discrimination are used to set a model independent 95\% confidence level expected upper limit on the production cross section times branching ratio, for a generic $\phi$ boson decaying into a muon pair in the 130 to 1000 GeV range.
Resumo:
This thesis presents a search for a sterile right-handed neutrino $N$ produced in $D_s$ meson decays, using proton-proton collisions collected by the CMS experiment at the LHC. The data set used for the analysis, the B-Parking data set, corresponds to an integrated luminosity of $41.7\,\textrm{fb}^{-1}$ and was collected during the 2018 data-taking period. The analysis is targeting the $D_s^+\rightarrow N(\rightarrow\mu^{\pm}\pi^{\mp})\mu^{+}$ decays, where the final state muons can have the same electric charge allowing for a lepton flavor violating decay. To separate signal from background, a cut-based analysis is optimized using requirements on the sterile neutrino vertex displacement, muon and pion impact parameter, and impact parameter significance. The expected limit on the active-sterile neutrino mixing matrix parameter $|V_{\mu}|^2$ is extracted by performing a fit of the $\mu\pi$ invariant mass spectrum for two sterile neutrino mass hypotheses, 1.0 and 1.5 GeV. The analysis is currently blinded, following the internal CMS review process. The expected limit ranges between approximately $10^{-4}$ for a 1.0 GeV neutrino to $7\times10^{-5}$ for a 1.5 GeV neutrino. This is competitive with the best existing results from collider experiments over the same mass range.