4 resultados para MULTIVALENT DENDRONS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
In the last decades mesenchymal stromal cells (MSC), intriguing for their multilineage plasticity and their proliferation activity in vitro, have been intensively studied for innovative therapeutic applications. In the first project, a new method to expand in vitro adipose derived-MSC (ASC) while maintaining their progenitor properties have been investigated. ASC are cultured in the same flask for 28 days in order to allow cell-extracellular matrix and cell-cell interactions and to mimic in vivo niche. ASC cultured with this method (Unpass cells) were compared with ASC cultured under classic condition (Pass cells). Unpass and Pass cells were characterized in terms of clonogenicity, proliferation, stemness gene expression, differentiation in vitro and in vivo and results obtained showed that Unpass cells preserve their stemness and phenotypic properties suggesting a fundamental role of the niche in the maintenance of ASC progenitor features. Our data suggests alternative culture conditions for the expansion of ASC ex vivo which could increase the performance of ASC in regenerative applications. In vivo MSC tracking is essential in order to assess their homing and migration. Super-paramagnetic iron oxide nanoparticles (SPION) have been used to track MSC in vivo due to their biocompatibility and traceability by MRI. In the second project a new generation of magnetic nanoparticles (MNP) used to label MSC were tested. These MNP have been functionalized with hyperbranched poly(epsilon-lysine)dendrons (G3CB) in order to interact with membrane glycocalix of the cells avoiding their internalization and preventing any cytotoxic effects. In literature it is reported that labeling of MSC with SPION takes long time of incubation. In our experiments after 15min of incubation with G3CB-MNP more then 80% of MSC were labeled. The data obtained from cytotoxic, proliferation and differentiation assay showed that labeling does not affect MSC properties suggesting a potential application of G3CB nano-particles in regenerative medicine.
Resumo:
Neisseria meningitidis serogroup B is the major etiological agent of meningitis and life-threatening sepsis, against which two vaccines are licensed. The 4CMenB vaccine is composed of three major protein antigens (fHbp, NHBA and NadA) and detergent-extracted outer membrane vesicles (DOMV) from the NZ98/254 strain. DOMV are safe, immunogenic and able to raise bactericidal antibodies, mainly attributed to the immunodominant PorA protein. Nevertheless, DOMV offer a complex reservoir of potentially immunogenic proteins, whose relative contribution in protection is still poorly characterized. By testing antisera from vaccinated infants in serum bactericidal assay, we observed that the addition of DOMV in the vaccine formulation enhanced breadth of coverage compared to recombinant proteins alone against a panel of 11 meningococcal strains mismatched for the vaccine antigens. To unravel the DOMV components involved in such protection, 30 DOMV antigens were cloned and expressed in Escherichia coli as recombinant proteins and/or in vesicles to maintain their native conformation. Samples obtained were both included in tailor-made protein-microarrays to immunoprofile the antibody repertoire raised by DOMV-containing formulations and were individually used for mouse immunization studies to assess their ability to induce bactericidal antibodies. The protein-array immunosignature of mouse DOMV/4CMenB antisera unveiled a subset of 8 DOMV-reactive proteins potentially responsible for the additional protective responses. The antisera derived from mouse immunizations showed high levels of antibodies and recognized the corresponding antigen across different meningococcal strains. Among the protein-array reactive antigens, OpcA, NspA and PorB induced antibodies able to kill 10 of the 11 genetically diverse meningococcal strains and the specificity of the protective role of OpcA and PorB was also confirmed in 4CMenB infant vaccinee sera. In conclusion, we identified additional PorA-independent antigens within DOMV involved in broadening the coverage of 4CMenB, thus supporting the key role played by vesicles in this multivalent formulation.
Resumo:
In the contest of a modern green chemistry approach, we firstly tried to substituent the classic peptide synthesis approach with the use of N-carboxyanhydrides in the presence of Hydroxyapatite, a high biocompatible inorganic base. Despite the great results, further developments are necessary for a daily use in laboratory and for our research, we decided to proceed with solid phase or liquid phase synthesis. In the first chapter, the treatment of pain with the use of opioids is introduced. The abuse and misuse of these kind of potent analgesics, led to the necessity of developing new drugs with less side effects. Starting from a previous study, where the introduction of a lactam-like structure in the place of the proline of Endomorphine1, switched the selectivity from MOR to KOR, we designed and synthetized three different libraries by placing a different trans inducer element to gain the desired selectivity and activity forcing the structure to adopt a linear rather than folded position. In the second chapter, we focused on lactate dehydrogenase, an enzyme overexpressed when the cells in hypoxia conditions, like in a tumour mass, need to produce energy through the transformation of pyruvate into lactate. We synthetized different cyclic peptidomimetics, designed to be inhibitors, as powerful tool to contrast cancer cells growing. Biological assays produced satisfactory preliminary results, but further studies are necessary for a definitive output. Finally in the last chapter, the cancer treatment problem is also approached through the design of nanoparticles, able to deliver drugs with efficacy and selectivity. We firstly synthetized silica core nanoparticles, built with toxic peptide sequences conjugated through click chemistry with Pluronic acid and then, in collaboration with Miriam Royo’s research group, we synthetized multivalent platforms for used drugs for the treatment of advanced colorectal cancer.