7 resultados para MT1-MMP
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background. Ageing and inflammation are critical for the occurrence of aortic diseases. Extensive inflammatory infiltrate and excessive ECM proteloysis, mediated by MMPs, are typical features of abdominal aortic aneurysm (AAA). Mesenchymal Stromal Cells (MSCs) have been detected within the vascular wall and represent attractive candidates for regenerative medicine, in virtue of mesodermal lineage differentiation and immunomodulatory activity. Meanwhile, many works have underlined an impaired MSC behaviour under pathological conditions. This study was aimed to define a potential role of vascular MSCs to AAA development. Methods. Aortic tissues were collected from AAA patients and healthy donors. Our analysis was organized on three levels: 1) histology of AAA wall; 2) detection of MSCs and evaluation of MMP-9 expression on AAA tissue; 3) MSC isolation from AAA wall and characterization for mesenchymal/stemness markers, MMP-2, MMP-9, TIMP-1, TIMP-2 and EMMPRIN. AAA-MSCs were tested for immunomodulation, when cultured together with activated peripheral blood mononuclear cells (PBMCs). In addition, a co-colture of both healthy and AAA MSCs was assessed and afterwards MMP-2/9 mRNA levels were analyzed. Results. AAA-MSCs showed basic mesenchymal properties: fibroblastic shape, MSC antigens, stemness genes. MMP-9 mRNA, protein and enzymatic activity were significantly increased in AAA-MSCs. Moreover, AAA-MSCs displayed a weak immunosuppressive activity, as shown by PBMC ongoing along cell cycle. MMP-9 was shown to be modulated at the transcriptional level through the direct contact as well as the paracrine action of healthy MSCs. Discussion. Vascular injury did not affect the MSC basic phenotype, but altered their function, a increased MMP-9 expression and ineffective immunmodulation. These data suggest that vascular MSCs can contribute to aortic disease. In this view, the study of key processes to restore MSC immunomodulation could be relevant to find a pharmacological approach for monitoring the aneurysm progression.
Resumo:
The corpus luteum (CL) lifespan is characterized by a rapid growth, differentiation and controlled regression of the luteal tissue, accompanied by an intense angiogenesis and angioregression. Indeed, the CL is one of the most highly vascularised tissue in the body with a proliferation rate of the endothelial cells 4- to 20-fold more intense than in some of the most malignant human tumours. This angiogenic process should be rigorously controlled to allow the repeated opportunities of fertilization. After a first period of rapid growth, the tissue becomes stably organized and prepares itself to switch to the phenotype required for its next apoptotic regression. In pregnant swine, the lifespan of the CLs must be extended to support embryonic and foetal development and vascularisation is necessary for the maintenance of luteal function. Among the molecules involved in the angiogenesis, Vascular Endothelial Growth Factor (VEGF) is the main regulator, promoting endothelial cells proliferation, differentiation and survival as well as vascular permeability and vessel lumen formation. During vascular invasion and apoptosis process, the remodelling of the extracellular matrix is essential for the correct evolution of the CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). Another important factor that plays a role in the processes of angiogenesis and angioregression during the CL formation and luteolysis is the isopeptide Endothelin-1 (ET-1), which is well-known to be a potent vasoconstrictor and mitogen for endothelial cells. The goal of the present thesis was to study the role and regulation of vascularisation in an adult vascular bed. For this purpose, using a precisely controlled in vivo model of swine CL development and regression, we determined the levels of expression of the members of VEGF system (VEGF total and specific isoforms; VEGF receptor-1, VEGFR-1; VEGF receptor-2, VEGFR-2) and ET- 1 system (ET-1; endothelin converting enzyme-1, ECE-1; endothelin receptor type A, ET-A) as well as the activity of the Ca++/Mg++-dependent endonucleases and gelatinases (MMP-2 and MMP-9). Three experiments were conducted to reach such objectives in CLs isolated from ovaries of cyclic, pregnant or fasted gilts. In the Experiment I, we evaluated the influence of acute fasting on VEGF production and VEGF, VEGFR-2, ET-1, ECE-1 and ET-A mRNA expressions in CLs collected on day 6 after ovulation (midluteal phase). The results indicated a down-regulation of VEGF, VEGFR-2, ET-1 and ECE-1 mRNA expression, although no change was observed for VEGF protein. Furthermore, we observed that fasting stimulated steroidogenesis by luteal cells. On the basis of the main effects of VEGF (stimulation of vessel growth and endothelial permeability) and ET-1 (stimulation of endothelial cell proliferation and vasoconstriction, as well as VEGF stimulation), we concluded that feed restriction possibly inhibited luteal vessel development. This could be, at least in part, compensated by a decrease of vasal tone due to a diminution of ET-1, thus ensuring an adequate blood flow and the production of steroids by the luteal cells. In the Experiment II, we investigated the relationship between VEGF, gelatinases and Ca++/Mg++-dependent endonucleases activities with the functional CL stage throughout the oestrous cycle and at pregnancy. The results demonstrated differential patterns of expression of those molecules in correspondence to the different phases of the oestrous cycle. Immediately after ovulation, VEGF mRNA/protein levels and MMP-9 activity are maximal. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. These results suggested that during the very early luteal phase, high MMPs activities coupled with high VEGF levels drive the tissue to an angiogenic phenotype, allowing CL growth under LH (Luteinising Hormone) stimulus, while during the late luteal phase, low VEGF and elevate MMPs levels may play a role in the apoptotic tissue and extracellular matrix remodelling during structural luteolysis. In the Experiment III, we described the expression patterns of all distinct VEGF isoforms throughout the oestrous cycle. Furthermore, the mRNA expression and protein levels of both VEGF receptors were also evaluated. Four novel VEGF isoforms (VEGF144, VEGF147, VEGF182, and VEGF164b) were found for the first time in swine and the seven identified isoforms presented four different patterns of expression. All isoforms showed their highest mRNA levels in newly formed CLs (day 1), followed by a decrease during mid-late luteal phase (days 10–17), except for VEGF182, VEGF188 and VEGF144 that showed a differential regulation during late luteal phase (day 14) or at luteolysis (day 17). VEGF protein levels paralleled the most expressed and secreted VEGF120 and VEGF164 isoforms. The VEGF receptors mRNAs showed a different pattern of expression in relation to their ligands, increasing between day 1 and 3 and gradually decreasing during the mid-late luteal phase. The differential regulation of some VEGF isoforms principally during the late luteal phase and luteolysis suggested a specific role of VEGF during tissue remodelling process that occurs either for CL maintenance in case of pregnancy or for noncapillary vessel development essential for tissue removal during structural luteolysis. In summary, our findings allow us to determine relationships among factors involved in the angiogenesis and angioregression mechanisms that take place during the formation and regression of the CL. Thus, CL provides a very interesting model for studying such factors in different fields of the basic research.
Resumo:
Matrix metalloproteinases (MMP) are a large family of proteinases that remodel extracellular matrix (ECM) component. Recent data suggest a role for MMPs in a number of renal pathophysiologies, associated with an imbalance of ECM syntesis and degradation, which may result in an accumulation of ECM molecules and renal fibrosis. The aim of this study is to elucidate the role of pro and activated MMP-2 and 9 in urine and renal tissue of healty and nephropatic dogs. Renal tissue of 8 healty dogs and either renal tissue and urine of 9 nephropatic dogs was collected and analize using zimographic method, which is been validated in this study. Either MMPs zimographic bands were present in almost all samples. In particular, pro and activated MMP-9 zimographic bands were poorly represent in renal tissue of healty dogs, whereas were very represent in nephropatic dogs. Pro and activated MMP-2 was present in either tissue of healty and nephropatic dogs. In urine of nephropatic dogs, pro and activated MMP-9 was more evident than MMP-2, but there was not correlaction with renal tissue levels, therefore urine levels of MMPs have poorly usefulness in diagnostic pratice. The values of Pro and activated MMP-9 in nephropatic dogs were significantly higher compared with normal dogs (p < 0,05), whereas there was not statistically meaningful for Pro and activated MMP-2. In conclusion, in this study we have validated a zimographic method for renal tissue of dogs and we have illustrated the changes in nephropatic dogs, which may be useful for further study.
Resumo:
Objectives In diabetic and non diabetic patients with peripheral artery obstructive disease (PAOD), we sought to establish whether the vascular wall damage, the mature circulating endothelium and the "in situ" neoangiogenesis are related with each other. Design In the peripheral blood of diabetic patients suffering critical ischaemia associated with peripheral artery disease, low levels and poor function of circulating endothelial progenitor cells (EPCs) were observed. Moreover, circulating endothelial cells (CECs) have been described in different conditions of vascular injury. In this type of disorders, which are all characterized by endothelial damage, neoangiogenesis plays a key role. Materials In the study we recruited 22 diabetic and 16 non diabetic patients, all of them suffering PAOD and critical ischaemia; healthy subjects and multiorgan donors have also been considered like controls. Methods Histopathologic characterization was performed on arterial tissue samples under a light microscope. Flow cytofluorimetric analysis was used to quantify CECs in peripheral blood samples. "In situ" expression of the Vascular Endothelial Growth Factor (VEGF) and Metalloproteinase 9 (MMP-9) transcripts was quantified in a Real Time-PCR analysis. Circulating VEGF concentration was determined by an ELISA assay. Results Arterial wall from diabetic patients, compared with non diabetic subjects, revealed a higher incidence of serious lesions (60% vs 47%) and a lower number of capillaries (65% vs 87%). Mean number of CECs/ml was significantly increased in all patients, compared to healthy controls (p=0.001). Compared to healthy subjects, VEGF transcripts expression resulted significantly higher in diabetic patients and in all patients (p<0.05) and a similar result was obtained in the MMP-9 transcripts expression. Serum VEGF concentration was significantly increased in PAOD patients correlated with controls (p=0.0431). Conclusions Our study demonstrates that in all patients considered, probably, regressive phenomenons prevail on reparative ones, causing an inesorable and progressive degeneration of the vascular wall, worse by diabetes. The vascular damage can be monitored by determining CECs number and its severity and development are emphasized by the MMP-9 transcripts expression. The "in situ" VEGF increased expression seems to be the evidence of a parietal cells bid to induce local angiogenesis. This reparing mechanism could induce the EPCs mobilitation by means the release of VEGF from the arterial wall. The mechanism, however, is ineffective like demonstrated by the EPCs reduced number and activities observed in patients suffering PAOD and critical ischaemia.
Resumo:
Cyclooxygenase-2/Carbonic anhydrase-IX up-regulation promotes invasive potential and hypoxia survival in colorectal cancer cells Purpose: Cyclooxygenase-2 (COX-2) is a major mediator of inflammation, playing a pivotal role in colorectal carcinogenesis. Hypoxia is an universal hallmark of solid tumour in vivo. This investigation was prompted by the observation that in colorectal cancer cells the expression of COX-2 protein is positively correlated with that of the hypoxia survival gene Carbonic Anhydrase-IX (CA-IX). Experimental Design: Since COX-2 gene expression and activity is increased in hypoxia, and that CA-IX is expressed also in normoxia in colorectal cancer cells, we tested the hypothesis that COX-2 activity in normoxia, as well as in hypoxia may be functionally linked to that of CA-IX gene. We investigated the role of COX-2 and CA-IX in colorectal cancer cell lines. In this regard, we performed RNA interference to knockdown COX-2 gene in vitro and immunohistochemistry to evaluate the protein expression of COX-2 and CA-IX in human colon cancer tissue specimens ex vivo. Results: We found that COX-2, by PGE2 production, controls CA-IX gene expression in an ERK dependent manner. In line with this finding, we also showed that the COX-2 inhibition by a specific short harpin COX-2 RNA (shCOX-2) or by a specific drug (SC-236), down-regulated CA-IX expression in colon cancer cells. We then exposed colon cancer cells to hypoxia stimuli and found that COX-2/CA-IX interplay promoted hypoxia survival. Moreover, we also report that COX-2/CA-IX interplay triggers Matrix Metalloproteinase 2/9 (MMP-2/9) activation and enhances the invasiveness of colorectal cancer cells. Thus given our above observations, we found that CA-IX and COX-2 protein expressions correlate with more aggressive stage colorectal cancer tissues ex vivo. Conclusions: Taken together these data indicate that COX-2/CA-IX interplay promotes an aggressive phenotype (hypoxia survival and invasiveness) which can be modulated in vitro by COX-2 selective inhibition and which may play a role in determining the biological aggressiveness of colorectal tumours. Moreover, in vitro and ex vivo data also suggest that the signatures of inflammation (COX-2) and hypoxia (CA-IX) may be difficult to be disentangled in colon cancer, being both responsible for the up-regulation of the same pathways.
Resumo:
Purpose: to quantify the mRNA levels of MMP-3, MMP-9, VEGF and Survivin in peripheral blood and the serum levels of CA-125, Ca19-9 in women with and without endometriosis and to investigate the performance of these markers to differentiate between deep and ovarian endometriosis. Methods: a case controls study enrolled a series of 60 patients. Twenty controls have been matched with 20 cases of ovarian and 20 cases of deep endometriosis. Univariable and multivariable performance of serum CA125 and CA19-9, mRNA for Survivin, MMP9, MMP3 and VEGF genes have been evaluated by means of ROC curves and logistic regression respectively. Results: No difference in markers concentration were detected between ovarian and deep endometriosis. In comparison with controls serum CA19 and CA125 yielded the better sensitivity followed by mRNA for Survivin gene (81.5%, 51.9% and 7.5% at 10% false positive rate respectively). Multivariable estimated odds of endometriosis yielded a sensitivity of 87% at the same false positive rate. Conclusions: A combination of serum and molecular markers could allow a better diagnosis of endometriosis.
Resumo:
The aim of this study is to investigate on some molecular mechanisms contributing to the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular chondrocytes. It is focused on understanding molecular events downstream GSK3β inactivation or dependent on the activity of IKKα, a kinase that does not belong to the phenotype of healthy articular chondrocytes. Moreover, the potential of some nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and chondrocyte senescence has been evaluated in vitro. The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial ROS production, that impacted on cellular proliferation, with S-phase transient arrest, increased SA-β gal and PAS staining, cell size and granularity. ROS are also responsible for the of increased expression of two major oxidative lesions, i.e. 1) double strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, and 2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. The pattern observed in vitro was confirmed on cartilage from OA patients. IKKa dramatically affects the intensity of the DNA damage response induced by oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by silencing strategies. At early time point an higher percentage of γH2AX positive cells and more foci in IKKa-KD cells are observed, but IKKa KD cells proved to almost completely recover after 24 hours respect to their controls. Telomere attrition is also reduced in IKKaKD. Finally MSH6 and MLH1 genes are up-regulated in IKKαKD cells but not in control cells. Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation and senescence, suggesting the ability of increasing cell homeostasis. These data indicate that nutraceuticals represent a great challenge in OA management, for both therapeutical and preventive purposes.