3 resultados para MOLECULAR-HYDROGEN

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of electrochemiluminescence (ECL) involves photophysical and electrochemical aspects. Excited states are populated by an electrical stimulus. The most important applications are in the diagnostic field where a number of different biologically-relevant molecules (e.g. proteins and nucleic acids) can be recognized and quantified with a sensitivity and specificity previously not reachable. As a matter of fact the electrochemistry, differently to the classic techniques as fluorescence and chemiluminescence, allows to control the excited state generation spatially and temporally. The two research visits into A. J. Bard electrochemistry laboratories were priceless. Dr. Bard has been one of ECL pioneers, the first to introduce the technique and the one who discovered in 1972 the surprising emission of Ru(bpy)3 2+. I consider necessary to thank by now my supervisors Massimo and Francesco for their help and for giving me the great opportunity to know this unique science man that made me feel enthusiastic. I will never be grateful enough… Considering that the experimental techniques of ECL did not changed significantly in these last years the most convenient research direction has been the developing of materials with new or improved properties. In Chapter I the basics concepts and mechanisms of ECL are introduced so that the successive experiments can be easily understood. In the final paragraph the scopes of the thesis are briefly described. In Chapter II by starting from ECL experimental apparatus of Dr. Bard’s laboratories the design, assembly and preliminary tests of the new Bologna instrument are carefully described. The instrument assembly required to work hard but resulted in the introduction of the new technique in our labs by allowing the continuation of the ECL studies began in Texas. In Chapter III are described the results of electrochemical and ECL studies performed on new synthesized Ru(II) complexes containing tetrazolate based ligands. ECL emission has been investigated in solution and in solid thin films. The effect of the chemical protonation of the tetrazolate ring on ECL emission has been also investigated evidencing the possibility of a catalytic effect (generation of molecular hydrogen) of one of the complexes in organic media. Finally, after a series of preliminary studies on ECL emission in acqueous buffers, the direct interaction with calf thymus DNA of some complexes has been tested by ECL and photoluminescence (PL) titration. In Chapter IV different Ir(III) complexes have been characterized electrochemically and photophysically (ECL and PL). Some complexes were already well-known in literature for their high quantum efficiency whereas the remaining were new synthesized compounds containing tetrazolate based ligands analogous to those investigated in Chapt. III. During the tests on a halogenated complex was unexpectedly evidenced the possibility to follow the kinetics of an electro-induced chemical reaction by using ECL signal. In the last chapter (V) the possibility to use mono-use silicon chips electrodes as ECL analitycal devices is under investigation. The chapter begins by describing the chip structure and materials then a signal reproducibility study and geometry optimization is carried on by using two different complexes. In the following paragraphs is reported in detail the synthesis of an ECL label based on Ru(bpy)3 2+ and the chip functionalization by using a lipoic acid SAM and the same label. After some preliminary characterizations (mass spectroscopy TOF) has been demonstrated that by mean of a simple and fast ECL measurement it’s possible to confirm the presence of the coupling product SAM-label into the chip with a very high sensitivity. No signal was detected from the same system by using photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.