5 resultados para MEDIATED PRESYNAPTIC INHIBITION
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Clusterin (CLU) gene produces different forms of protein products which vary in their biological properties and distribution within the cell. Both the extra- and intracellular CLU forms regulate cell proliferation and apoptosis. Dis-regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over-expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC-3 prostate cancer cells. Following siRNA, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e. H3 mRNA, PCNA and cyclins A, B1 and D) as detected by RT-qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half-life is less than 2 hours. All CLU protein products were found poly-ubiquitinated by co-immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, strongly inducing the nuclear form of CLU (nCLU) and committing cells to caspase-dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumour suppressor factor.
Resumo:
The Myc oncoproteins belong to a family of transcription factors composed by Myc, N-Myc and L-Myc. The most studied components of this family are Myc and N-Myc because their expressions are frequently deregulated in a wide range of cancers. These oncoproteins can act both as activators or repressors of gene transcription. As activators, they heterodimerize with Max (Myc associated X-factor) and the heterodimer recognizes and binds a specific sequence elements (E-Box) onto gene promoters recruiting histone acetylase and inducing transcriptional activation. Myc-mediated transcriptional repression is a quite debated issue. One of the first mechanisms defined for the Myc-mediated transcriptional repression consisted in the interaction of Myc-Max complex Sp1 and/or Miz1 transcription factors already bound to gene promoters. This interaction may interfere with their activation functions by recruiting co-repressors such as Dnmt3 or HDACs. Moreover, in the absence of , Myc may interfere with the Sp1 activation function by direct interaction and subsequent recruitment of HDACs. More recently the Myc/Max complex was also shown to mediate transcriptional repression by direct binding to peculiar E-box. In this study we analyzed the role of Myc overexpression in Osteosarcoma and Neuroblastoma oncogenesis and the mechanisms underling to Myc function. Myc overexpression is known to correlate with chemoresistance in Osteosarcoma cells. We extended this study by demonstrating that c-Myc induces transcription of a panel of ABC drug transporter genes. ABCs are a large family trans-membrane transporter deeply involved in multi drug resistance. Furthermore expression levels of Myc, ABCC1, ABCC4 and ABCF1 were proved to be important prognostic tool to predict conventional therapy failure. N-Myc amplification/overexpression is the most important prognostic factor for Neuroblastoma. Cyclin G2 and Clusterin are two genes often down regulated in neuroblastoma cells. Cyclin G2 is an atypical member of Cyclin family and its expression is associated with terminal differentiation and apoptosis. Moreover it blocks cell cycle progression and induces cell growth arrest. Instead, CLU is a multifunctional protein involved in many physiological and pathological processes. Several lines of evidences support the view that CLU may act as a tumour suppressor in Neuroblastoma. In this thesis I showed that N-Myc represses CCNG2 and CLU transcription by different mechanisms. • N-Myc represses CCNG2 transcription by directly interacting with Sp1 bound in CCNG2 promoter and recruiting HDAC2. Importantly, reactivation of CCNG2 expression through epigenetic drugs partially reduces N-Myc and HDAC2 mediated cell proliferation. • N-Myc/Max complex represses CLU expression by direct binding to a peculiar E-box element on CLU promoter and by recruitment of HDACs and Polycomb Complexes, to the CLU promoter. Overall our findings strongly support the model in which Myc overexpression/amplification may contribute to some aspects of oncogenesis by a dual action: i) transcription activation of genes that confer a multidrug resistant phenotype to cancer cells; ii), transcription repression of genes involved in cell cycle inhibition and cellular differentiation.
Resumo:
Many physiological and pathological processes are mediated by the activity of proteins assembled in homo and/or hetero-oligomers. The correct recognition and association of these proteins into a functional complex is a key step determining the fate of the whole pathway. This has led to an increasing interest in selecting molecules able to modulate/inhibit these protein-protein interactions. In particular, our research was focused on Heat Shock Protein 90 (Hsp90), responsible for the activation and maturation and disposition of many client proteins [1], [2] [3]. Circular Dichroism (CD) spectroscopy, Surface Plasmon Resonance (SPR) and Affinity Capillary Electrophoresis (ACE) were used to characterize the Hsp90 target and, furthermore, its inhibition process via C-terminal domain driven by the small molecule Coumermycin A1. Circular Dichroism was used as powerful technique to characterize Hsp90 and its co-chaperone Hop in solution for secondary structure content, stability to different pHs, temperatures and solvents. Furthermore, CD was used to characterize ATP but, unfortunately, we were not able to monitor an interaction between ATP and Hsp90. The utility of SPR technology, on the other hand, arises from the possibility of immobilizing the protein on a chip through its N-terminal domain to later study the interaction with small molecules able to disrupt the Hsp90 dimerization on the C-terminal domain. The protein was attached on SPR chip using the “amine coupling” chemistry so that the C-terminal domain was free to interact with Coumermycin A1. The goal of the experiment was achieved by testing a range of concentrations of the small molecule Coumermycin A1. Despite to the large difference in the molecular weight of the protein (90KDa) and the drug (1110.08 Da), we were able to calculate the affinity constant of the interaction that was found to be 11.2 µm. In order to confirm the binding constant calculated for the Hsp90 on the chip, we decided to use Capillary Electrophoresis to test the Coumermycin binding to Hsp90. First, this technique was conveniently used to characterize the Hsp90 sample in terms of composition and purity. The experimental conditions were settled on two different systems, the bared fused silica and the PVA-coated capillary. We were able to characterize the Hsp90 sample in both systems. Furthermore, we employed an application of capillary electrophoresis, the Affinity Capillary Electrophoresis (ACE), to measure and confirm the binding constant calculated for Coumermycin on Optical Biosensor. We found a KD = 19.45 µM. This result compares favorably with the KD previously obtained on biosensor. This is a promising result for the use of our novel approach to screen new potential inhibitors of Hsp90 C-terminal domain.
Resumo:
Synthetic lethality represents an anticancer strategy that targets tumor specific gene defects. One of the most studied application is the use of PARP inhibitors (e.g. olaparib) in BRCA1/2-less cancer cells. In BRCA2-defective tumors, olaparib (OLA) inhibits DNA single-strand break repair, while BRCA2 mutations hamper homologous recombination (HR) repair. The simultaneous impairment of those pathways leads BRCA-less cells to death by synthetic lethality. The projects described in this thesis were aimed at extending the use of OLA in cancer cells that do not carry a mutation in BRCA2 by combining this drug with compounds that could mimic a BRCA-less environment via HR inhibition. We demonstrated the effectiveness of our “fully small-molecule induced synthetic lethality” by using two different approaches. In the direct approach (Project A), we identified a series of neo-synthesized compounds (named RAD51-BRCA2 disruptors) that mimic BRCA2 mutations by disrupting the RAD51-BRCA2 interaction and thus the HR pathway. Compound ARN 24089 inhibited HR in human pancreatic adenocarcinoma cell line and triggered synthetic lethality by synergizing with OLA. Interestingly, the observed synthetic lethality was triggered by tackling two biochemically different mechanisms: enzyme inhibition (PARP) and protein-protein disruption (RAD51-BRCA2). In the indirect approach (Project B), we inhibited HR by interfering with the cellular metabolism through inhibition of LDH activity. The obtained data suggest an LDH-mediated control on HR that can be exerted by regulating either the energy supply needed to this repair mechanism or the expression level of genes involved in DNA repair. LDH inhibition also succeeded in increasing the efficiency of OLA in BRCA-proficient cell lines. Although preliminary, these results highlight a complex relationship between metabolic reactions and the control of DNA integrity. Both the described projects proved that our “fully small-molecule-induced synthetic lethality” approach could be an innovative approach to unmet oncological needs.
Resumo:
Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.