3 resultados para MEASURING BETA-DIVERSITY
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.
Resumo:
Aims: the broad objective of this study is to investigate the ecological, biodiversity and conservation status of the coastal forests of Kenya fragments. The specific aims of the study are: (1) to investigate current quantitative trends in plant diversity; (2) develop a spatial and standardised vegetation database for the coastal forests Kenya; (3) investigate forest structure, species diversity and composition across the forests; (4) investigate the effect of forest fragment area on plant species diversity; (5) investigate phylogenetic diversity across these coastal remnants (6) assess vulnerability and provide conservation perspectives to concrete policy issues; (7) investigate plant and butterfly diversity correlation. Methods: I performed various analytical methods including species diversity metrics; multiple regression models for species-area relationship and small island effect; non-metric multidimensional scaling; ANOSIM; PERMANOVA; multiplicative beta diversity partitioning; species accumulation curve and species indicator analysis; statistical tests, rarefaction of species richness; phylogenetic diversity metrics of Phylogenetic diversity index, mean pairwise distance, mean nearest taxon distance, and their null-models: and Co-correspondence analysis. Results: developed the first large standardised, spatial and geo-referenced vegetation database for coastal forests of Kenya consisting of 600 plant species, across 25 forest fragments using 158 plots subdivided into 3160 subplots, 18 sacred forests and seven forest reserves; species diversity, composition and forest structure was significantly different across forest sites and between forest reserves and sacred forests, higher beta diversity, species-area relationship explained significant variability of plant diversity, small Island effect was not evident; sacred forests exhibited higher phylogenetic diversity compared to forest reserves; the threatened Red List species contributed higher evolutionary history; a strong correlation between plants and butterfly diversity. Conclusions: This study provides for the first time a standardized and large vegetation data. Results emphasizes need to improve sacred forests protection status and enhance forest connectivity across forest reserves and sacred forests.
Resumo:
This thesis focuses on the impact of climate change in alpine ecosystems stressing the response of high elevation terricolous lichen communities. In fact, despite the strong sensitivity of cryptogams to changes in climatic factors, information is still scanty.We collected records in 154 plots placed in the summit area of the Majella Massif. In Following a multitaxon approach, Chapter 1 includes cryptogams and vascular plants. We analysed patterns in species richness, beta diversity and functional composition. In Chapter 2, we analysed the relationships between climatic variables and phylogenetic diversity and structure indices. Chapter 3 provides a long-term response relative to the consequences of climate change on a representative terricolous lichen genus across the Alps. Chapter 4 explores the relationships between the species richness and the functional composition of lichen growing on two types of substrates (carbonatic and siliceous soils) along different elevation gradients in the Eastern Alps. Climate change could affect cryptogams and lichens much more than vascular plants in Mediterranean mountains. Contrasting species-climate and traits-climate relationships were found between lichens and bryophytes, suggesting that each group may be sensitive to different components of climate change. Ongoing climate change may also lead to a loss of genetic diversity at high elevation ranges in the Mediterranean mountains, pauperising the life history richness of lichens. Alpine results forecasted that moderate range loss dynamics will occur at low elevation and in peripheral areas of the alpine chain. Results also support the view that range dynamics could be associated with functional traits mainly related to water-use strategies, dispersal, and establishment ability. We also highlighted the importance of substrates as a main driver of both species’ richness and functional traits composition. A “trade-off” also occurs between stress tolerance and the competitive response of communities of terricolous lichens that grow above siliceous and carbonatic soils.