1 resultado para MCMC algorithm
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
L’invarianza spaziale dei parametri di un modello afflussi-deflussi può rivelarsi una soluzione pratica e valida nel caso si voglia stimare la disponibilità di risorsa idrica di un’area. La simulazione idrologica è infatti uno strumento molto adottato ma presenta alcune criticità legate soprattutto alla necessità di calibrare i parametri del modello. Se si opta per l’applicazione di modelli spazialmente distribuiti, utili perché in grado di rendere conto della variabilità spaziale dei fenomeni che concorrono alla formazione di deflusso, il problema è solitamente legato all’alto numero di parametri in gioco. Assumendo che alcuni di questi siano omogenei nello spazio, dunque presentino lo stesso valore sui diversi bacini, è possibile ridurre il numero complessivo dei parametri che necessitano della calibrazione. Si verifica su base statistica questa assunzione, ricorrendo alla stima dell’incertezza parametrica valutata per mezzo di un algoritmo MCMC. Si nota che le distribuzioni dei parametri risultano in diversa misura compatibili sui bacini considerati. Quando poi l’obiettivo è la stima della disponibilità di risorsa idrica di bacini non strumentati, l’ipotesi di invarianza dei parametri assume ancora più importanza; solitamente infatti si affronta questo problema ricorrendo a lunghe analisi di regionalizzazione dei parametri. In questa sede invece si propone una procedura di cross-calibrazione che viene realizzata adottando le informazioni provenienti dai bacini strumentati più simili al sito di interesse. Si vuole raggiungere cioè un giusto compromesso tra lo svantaggio derivante dall’assumere i parametri del modello costanti sui bacini strumentati e il beneficio legato all’introduzione, passo dopo passo, di nuove e importanti informazioni derivanti dai bacini strumentati coinvolti nell’analisi. I risultati dimostrano l’utilità della metodologia proposta; si vede infatti che, in fase di validazione sul bacino considerato non strumentato, è possibile raggiungere un buona concordanza tra le serie di portata simulate e osservate.