3 resultados para MAXIMUM PENALIZED LIKELIHOOD ESTIMATES
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.
Resumo:
Extreme weather events related to deep convection are high-impact critical phenomena whose reliable numerical simulation is still challenging. High-resolution (convection-permitting) modeling setups allow to switch off physical parameterizations accountable for substantial errors in convection representation. A new convection-permitting reanalysis over Italy (SPHERA) has been produced at ARPAE to enhance the representation and understanding of extreme weather situations. SPHERA is obtained through a dynamical downscaling of the global reanalysis ERA5 using the non-hydrostatic model COSMO at 2.2 km grid spacing over 1995-2020. This thesis aims to verify the expectations placed on SPHERA by analyzing two weather phenomena that are particularly challenging to simulate: heavy rainfall and hail. A quantitative statistical analysis over Italy during 2003-2017 for daily and hourly precipitation is presented to compare the performance of SPHERA with its driver ERA5 considering the national network of rain gauges as reference. Furthermore, two extreme precipitation events are deeply investigated. SPHERA shows a quantitative added skill over ERA5 for moderate to severe and rapid accumulations in terms of adherence to the observations, higher detailing of the spatial fields, and more precise temporal matching. These results prompted the use of SPHERA for the investigation of hailstorms, for which the combination of multiple information is crucial to reduce the substantial uncertainties permeating their understanding. A proxy for hail is developed by combining hail-favoring environmental numerical predictors with observations of ESWD hail reports and satellite overshooting top detections. The procedure is applied to the extended summer season (April-October) of 2016-2018 over the whole SPHERA spatial domain. The results indicate maximum hail likelihood over pre-Alpine regions and the northern Adriatic sea around 15 UTC in June-July, in agreement with recent European hail climatologies. The method demonstrates enhanced performance in case of severe hail occurrences and the ability to separate between ambient signatures depending on hail severity.
Resumo:
In the thesis we present the implementation of the quadratic maximum likelihood (QML) method, ideal to estimate the angular power spectrum of the cross-correlation between cosmic microwave background (CMB) and large scale structure (LSS) maps as well as their individual auto-spectra. Such a tool is an optimal method (unbiased and with minimum variance) in pixel space and goes beyond all the previous harmonic analysis present in the literature. We describe the implementation of the QML method in the {\it BolISW} code and demonstrate its accuracy on simulated maps throughout a Monte Carlo. We apply this optimal estimator to WMAP 7-year and NRAO VLA Sky Survey (NVSS) data and explore the robustness of the angular power spectrum estimates obtained by the QML method. Taking into account the shot noise and one of the systematics (declination correction) in NVSS, we can safely use most of the information contained in this survey. On the contrary we neglect the noise in temperature since WMAP is already cosmic variance dominated on the large scales. Because of a discrepancy in the galaxy auto spectrum between the estimates and the theoretical model, we use two different galaxy distributions: the first one with a constant bias $b$ and the second one with a redshift dependent bias $b(z)$. Finally, we make use of the angular power spectrum estimates obtained by the QML method to derive constraints on the dark energy critical density in a flat $\Lambda$CDM model by different likelihood prescriptions. When using just the cross-correlation between WMAP7 and NVSS maps with 1.8° resolution, we show that $\Omega_\Lambda$ is about the 70\% of the total energy density, disfavouring an Einstein-de Sitter Universe at more than 2 $\sigma$ CL (confidence level).