3 resultados para MARSHY FORESTS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major index has been deeply studied from the early 1900s and recently has been generalized in different directions, such as the case of labeled forests and colored permutations. In this thesis we define new types of labelings for forests in which the labels are colored integers. We extend the definition of the flag-major index for these labelings and we present an analogue of well known major index hook length formulas. Finally, this study (which has just apparently a simple combinatoric nature) allows us to show a notion of duality for two particular families of groups obtained from the product G(r,n)×G(r,m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le tecniche di Machine Learning sono molto utili in quanto consento di massimizzare l’utilizzo delle informazioni in tempo reale. Il metodo Random Forests può essere annoverato tra le tecniche di Machine Learning più recenti e performanti. Sfruttando le caratteristiche e le potenzialità di questo metodo, la presente tesi di dottorato affronta due casi di studio differenti; grazie ai quali è stato possibile elaborare due differenti modelli previsionali. Il primo caso di studio si è incentrato sui principali fiumi della regione Emilia-Romagna, caratterizzati da tempi di risposta molto brevi. La scelta di questi fiumi non è stata casuale: negli ultimi anni, infatti, in detti bacini si sono verificati diversi eventi di piena, in gran parte di tipo “flash flood”. Il secondo caso di studio riguarda le sezioni principali del fiume Po, dove il tempo di propagazione dell’onda di piena è maggiore rispetto ai corsi d’acqua del primo caso di studio analizzato. Partendo da una grande quantità di dati, il primo passo è stato selezionare e definire i dati in ingresso in funzione degli obiettivi da raggiungere, per entrambi i casi studio. Per l’elaborazione del modello relativo ai fiumi dell’Emilia-Romagna, sono stati presi in considerazione esclusivamente i dati osservati; a differenza del bacino del fiume Po in cui ai dati osservati sono stati affiancati anche i dati di previsione provenienti dalla catena modellistica Mike11 NAM/HD. Sfruttando una delle principali caratteristiche del metodo Random Forests, è stata stimata una probabilità di accadimento: questo aspetto è fondamentale sia nella fase tecnica che in fase decisionale per qualsiasi attività di intervento di protezione civile. L'elaborazione dei dati e i dati sviluppati sono stati effettuati in ambiente R. Al termine della fase di validazione, gli incoraggianti risultati ottenuti hanno permesso di inserire il modello sviluppato nel primo caso studio all’interno dell’architettura operativa di FEWS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: the broad objective of this study is to investigate the ecological, biodiversity and conservation status of the coastal forests of Kenya fragments. The specific aims of the study are: (1) to investigate current quantitative trends in plant diversity; (2) develop a spatial and standardised vegetation database for the coastal forests Kenya; (3) investigate forest structure, species diversity and composition across the forests; (4) investigate the effect of forest fragment area on plant species diversity; (5) investigate phylogenetic diversity across these coastal remnants (6) assess vulnerability and provide conservation perspectives to concrete policy issues; (7) investigate plant and butterfly diversity correlation. Methods: I performed various analytical methods including species diversity metrics; multiple regression models for species-area relationship and small island effect; non-metric multidimensional scaling; ANOSIM; PERMANOVA; multiplicative beta diversity partitioning; species accumulation curve and species indicator analysis; statistical tests, rarefaction of species richness; phylogenetic diversity metrics of Phylogenetic diversity index, mean pairwise distance, mean nearest taxon distance, and their null-models: and Co-correspondence analysis. Results: developed the first large standardised, spatial and geo-referenced vegetation database for coastal forests of Kenya consisting of 600 plant species, across 25 forest fragments using 158 plots subdivided into 3160 subplots, 18 sacred forests and seven forest reserves; species diversity, composition and forest structure was significantly different across forest sites and between forest reserves and sacred forests, higher beta diversity, species-area relationship explained significant variability of plant diversity, small Island effect was not evident; sacred forests exhibited higher phylogenetic diversity compared to forest reserves; the threatened Red List species contributed higher evolutionary history; a strong correlation between plants and butterfly diversity. Conclusions: This study provides for the first time a standardized and large vegetation data. Results emphasizes need to improve sacred forests protection status and enhance forest connectivity across forest reserves and sacred forests.