15 resultados para MANUFACTURING PROCESS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose of this research is to deepen the study on the section in architecture. The survey aims as important elements in the project Teatro Domestico by Aldo Rossi built for the XVII Triennale di Milano in 1986 and, through the implementation on several topics of architecture, verify the timeliness and fertility in the new compositional exercises. Through the study of certain areas of the Rossi’s theory we tried to find a common thread for the reading of the theater project. The theater is the place of the ephemeral and the artificial, which is why his destiny is the end and the fatal loss. The design and construction of theater setting has always had a double meaning between the value of civil architecture and testing of new technologies available. Rossi's experience in this area are clear examples of the inseparable relationship between the representation of architecture as art and design of architecture as a model of reality. In the Teatro Domestico, the distinction between representation and the real world is constantly canceled and returned through the reversal of the meaning and through the skip of scale. At present, studies conducted on the work of Rossi concern the report that the architectural composition is the theory of form, focusing compositional development of a manufacturing process between the typological analysis and form invention. The research, through the analysis of some projects few designs, will try to analyze this issue through the rules of composition both graphical and concrete construction, hoping to decipher the mechanism underlying the invention. The almost total lack of published material on the project Teatro Domestico and the opportunity to visit the archives that preserve the drawings, has allowed the author of this study to deepen the internal issues in the project, thus placing this search as a first step toward possible further analysis on the works of Rossi linked to performance world. The final aim is therefore to produce material that can best describe the work of Rossi. Through the reading of the material published by the same author and the vision of unpublished material preserved in the archives, it was possible to develop new material and increasing knowledge about the work, otherwise difficult to analyze. The research is divided into two groups. The first, taking into account the close relationship most frequently mentioned by Rossi himself between archeology and architectural composition, stresses the importance of tipo such as urban composition reading system as well as open tool of invention. Resuming Ezio Bonfanti’s essay on the work of the architect we wanted to investigate how the paratactic method is applied to the early work conceived and, subsequently as the process reaches a complexity accentuated, while keeping stable the basic terms. Following a brief introduction related to the concept of the section and the different interpretations that over time the term had, we tried to identify with this facility a methodology for reading Rossi’s projects. The result is a constant typological interpretation of the term, not only related to the composition in plant but also through the elevation plans. The section is therefore intended as the overturning of such elevation is marked on the same plane of the terms used, there is a different approach, but a similarity of characters. The identification of architectural phonemes allows comparison with other arts. The research goes in the direction of language trying to identify the relationship between representation and construction, between the ephemeral and the real world. In this sense it will highlight the similarities between the graphic material produced by Ross and some important examples of contemporary author. The comparison between the composition system with the surrealist world of painting and literature will facilitate the understanding and identification of possible rules applied by Rossi. The second part of the research is characterized by a focus on the intent of the project chosen. Teatro Domestico embodies a number of elements that seem to conclude (assuming an end point but also to start) a curriculum author. With it, the experiments carried out on the theater started with the project for the Teatrino Scientifico (1978) through the project for the Teatro del Mondo (1979), into a Laic Tabernacle representative collective and private memory of the city. Starting from a reading of the draft, through the collection of published material, we’ve made an analysis on the explicit themes of the work, finding the conceptual references. Following the taking view of the original materials not published kept at Aldo Rossi's Archive Collection of the Canadian Center for Architecture in Montréal, will be implemented through the existing techniques for digital representation, a virtual reconstruction of the project, adding little to the material, a new element for future studies. The reconstruction is part of a larger research studies where the current technologies of composition and representation in architecture stand side by side with research on the method of composition of this architect. The results achieved are in addition to experiences in the past dealt with the reconstruction of some of the lost works of Aldo Rossi. A partial objective is to reactivate a discourse around this work is considered non-principal, among others born in the prolific activities. Reassessment of development projects which would bring the level of ephemeral works most frequented by giving them the value earned. In conclusion, the research aims to open a new field of interest on the part not only as a technical instrument of representation of an idea but as an actual mechanism through which composition is formed and the idea is developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Con gli strumenti informatici disponibili oggi per le industrie, in particolar modo coi software CAE, le possibile simulare in maniera più che soddisfacente i fenomeni fisici presenti in natura. Anche il raffreddamento di un manufatto in polimero può venire simulato, a patto che si conoscano tutti i dati dei materiali e delle condizioni al contorno. Per quanto riguarda i dati dei materiali, i produttori di polimeri sono molto spesso in grado di fornirli, mentre le condizioni al contorno devono essere padroneggiate dal detentore della tecnologia. Nella pratica, tale conoscenza è al più incompleta, quindi si fanno ipotesi per colmare le lacune. Una tra le ipotesi più forti fatte è quella di una perfetta conduzione all'interfaccia tra due corpi. Questo è un vincolo troppo forte, se paragonato alla precisione di tutti gli altri dati necessari alla simulazione, e quindi si è deciso di eseguire una campagna sperimentale per stimare la resistenza al passaggio flusso termico all'interfaccia polimero-stampo ovvero determinare la conduttanza termica di contatto. L'attività svolta in questa tesi di dottorato ha come scopo quello di fornire un contributo significativo allo sviluppo e al miglioramento dell'efficienza termica degli stampi di formatura dei polimeri termoplastici con tecnologia a compressione.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite laminates present important advantages compared to conventional monolithic materials, mainly because for equal stiffness and strength they have a weight up to four times lower. However, due to their ply-by-ply nature, they are susceptible to delamination, whose propagation can bring the structure to a rapid catastrophic failure. In this thesis, in order to increase the service life of composite materials, two different approaches were explored: increase the intrinsic resistance of the material or confer to them the capability of self-repair. The delamination has been hindered through interleaving the composite laminates with polymeric nanofibers, which completed the hierarchical reinforcement scale of the composite. The manufacturing process for the integration of the nanofibrous mat in the laminate was optimized, resulting in an enhancement of mode I fracture toughness up to 250%. The effect of the geometrical dimensions of the nano-reinforcement on the architecture of the micro one (UD and woven laminates) was studied on mode I and II. Moreover, different polymeric materials were employed as nanofibrous reinforcement (Nylon 66 and polyvinylidene fluoride). The nano toughening mechanism was studied by micrograph analysis of the crack path and SEM analysis of the fracture surface. The fatigue behavior to the onset of the delamination and the crack growth rate for woven laminates interleaved with Nylon 66 nanofibers was investigated. Furthermore, the impact behavior of GLARE aluminum-glass epoxy laminates, toughened with Nylon 66 nanofibers was investigated. Finally, the possibility of confer to the composite material the capability of self-repair was explored. An extrinsic self-healing-system, based on core-shell nanofibers filled with a two-component epoxy system, was developed by co-electrospinning technique. The healing potential of the nano vascular system has been proved by microscope electron observation of the healing agent release as result of the vessels rupture and the crosslinking reaction was verified by thermal analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructure of 6XXX aluminum alloys deeply affects mechanical, crash, corrosion and aesthetic properties of extruded profiles. Unfortunately, grain structure evolution during manufacturing processes is a complex phenomenon because several process and material parameters such as alloy chemical composition, temperature, extrusion speed, tools geometries, quenching and thermal treatment parameters affect the grain evolution during the manufacturing process. The aim of the present PhD thesis was the analysis of the recrystallization kinetics during the hot extrusion of 6XXX aluminum alloys and the development of reliable recrystallization models to be used in FEM codes for the microstructure prediction at a die design stage. Experimental activities have been carried out in order to acquire data for the recrystallization models development, validation and also to investigate the effect of process parameters and die design on the microstructure of the final component. The experimental campaign reported in this thesis involved the extrusion of AA6063, AA6060 and AA6082 profiles with different process parameters in order to provide a reliable amount of data for the models validation. A particular focus was made to investigate the PCG defect evolution during the extrusion of medium-strength alloys such as AA6082. Several die designs and process conditions were analysed in order to understand the influence of each of them on the recrystallization behaviour of the investigated alloy. From the numerical point of view, innovative models for the microstructure prediction were developed and validated over the extrusion of industrial-scale profiles with complex geometries, showing a good matching in terms of the grain size and surface recrystallization prediction. The achieved results suggest the reliability of the developed models and their application in the industrial field for process and material properties optimization at a die-design stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, electrical machines are seeing an ever-increasing development and extensive research is currently being dedicated to the improvement of their efficiency and torque/power density. Compared to conventional random windings, hairpin winding inherently features lower DC resistance, higher fill factor, better thermal performance, improved reliability, and an automated manufacturing process. However, several challenges need to be addressed, including electromagnetic, thermal, and manufacturing aspects. Of these, the high ohmic losses at high-frequency operations due to skin and proximity effects are the most severe, resulting in low efficiency or high-temperature values. In this work, the hairpin winding challenges were highlighted at high-frequency operations and at showing the limits of applicability of these standard approaches. Afterward, a multi-objective design optimization is proposed aiming to enhance the exploitation of the hairpin technology in electrical machines. Efficiency and volume power density are considered as main design objectives. Subsequently, a changing paradigm is made for the design of electric motors equipped with hairpin windings, where it is proven that a temperature-oriented approach would be beneficial when designing this type of pre-formed winding. Furthermore, the effect of the rotor topology on AC losses is also considered. After providing design recommendations and FE electromagnetic and thermal evaluations, experimental tests are also performed for validation purposes on a motorette wound with pre-formed conductors. The results show that operating the machine at higher temperatures could be beneficial to efficiency, particularly in high-frequency operations where AC losses are higher at low operating temperatures. The last part of the thesis focuses on comparing the main electromagnetic performance metrics for a conventional hairpin winding, wound onto a benchmark stator with a semi-closed slot opening design, and a continuous hairpin winding, in which the slot opening is open. Lastly, the adoption of semi-magnetic slot wedges is investigated to improve the overall performance of the motor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a context of technological innovation, the aim of this thesis is to develop a technology that has gained interest in both scientific and industrial realms. This technology serves as a viable alternative to outdated and energy-consuming industrial systems. Electro-adhesive devices (EADs) leverage electrostatic forces for grasping objects or adhering to surfaces. The advantage of employing electrostatics lies in its adaptability to various materials without compromising the structure or chemistry of the object or surface. These benefits have led the industry to explore this technology as a replacement for costly vacuum systems and suction cups currently used for handling most products. Furthermore, the broad applicability of this technology extends to extreme environments, such as space with ultra-high vacuum conditions. Unfortunately, research in this area has yet to yield practical results for industrially effective gripper prototyping. This is primarily due to the inherent complexity of electro-adhesive technology, which operates on basic capacitive principles that does not find satisfying physical descriptions. This thesis aims to address these challenges through a series of studies, starting with the manufacturing process and testing of an EAD that has become the standard in our laboratory. It then delves into material and electrode geometry studies to enhance system performance, ultimately presenting potential industrial applications of the technology. All the presented results are encouraging, as they have yielded shear force values three times higher than those previously reported in the literature. The various applications have demonstrated the significant effectiveness of EADs as brakes or, more broadly, in exerting shear forces. This opens up the possibility of utilizing cutting-edge technologies to push the boundaries of technology to the fullest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PhD project that will be presented in this thesis is focused on the study and optimization of the production process for the manufacturing of electrical powertrain components in the automotive field using the laser beam welding process (LBW). The objective is to define, through experimental activities, an optimized process condition for applications in the electrical field that can be generalized, that is, which guarantees its reproducibility as the types of connections vary and which represents the basis for extending the method to future applications in e-mobility sector. The work developed along two lines of research, the convergence of which made it possible to create prototypes of battery modules based on different types of lithium-ion cells and stator windings for electric motors. On the one hand, the different welding configurations involving the production of batteries based on pouch cells and therefore the welding of aluminum and copper in dissimilar configuration were studied, while for the prismatic cells only one configuration was analyzed. On the other hand, the welding of pure copper hairpins with rectangular shape in edge joint configuration was studied for the production of stator windings. The experimental tests carried out have demonstrated the feasibility of using the LBW process for the production of electric powertrain components entirely designed and developed internally as the types of materials and welding configurations vary; the methodologies required for the characterization methods, necessary for the end-of-line tests, for the evaluation of the properties of the different joint configurations and components (battery and electric motor) were also defined with the aim of obtaining the best performance. The entire doctorate program was conducted in collaboration with Ferrari Auto S.p.A. and the direct industrial application of the issues addressed has been faced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this thesis is to facilitate the process of industrial automated systems development applying formal methods to ensure the reliability of systems. A new formulation of distributed diagnosability problem in terms of Discrete Event Systems theory and automata framework is presented, which is then used to enforce the desired property of the system, rather then just verifying it. This approach tackles the state explosion problem with modeling patterns and new algorithms, aimed for verification of diagnosability property in the context of the distributed diagnosability problem. The concepts are validated with a newly developed software tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research work concerns the application of additive manufacturing (AM) technologies in new electric mobility sectors. The unmatched freedom that AM offers can potentially change the way electric motors are designed and manufactured. The thesis investigates the possibility of creating optimized electric machines that exploit AM technologies, with potential in various industrial sectors, including automotive and aerospace. In particular, we will evaluate how the design of electric motors can be improved by producing the rotor core using Laser Powder Bed Fusion (LPBF) and how the resulting design choices affect component performance. First, the metallurgical and soft magnetic properties of the pure iron and silicon iron alloy parts (Fe-3% wt.Si) produced by LPBF will be defined and discussed, considering the process parameters and the type of heat treatment. This research shows that using LPBF, both pure iron and iron silicon, the parts have mechanical and magnetic properties different from the laminated ones. Hence, FEM-based modeling will be employed to design the rotor core of an SYN RM machine to minimize torque ripple while maintaining structural integrity. Finally, we suggest that further research should extend the field of applicability to other electrical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project aims to gather an understanding of additive manufacturing and other manufacturing 4.0 techniques with an eyesight for industrialization. First the internal material anisotropy of elements created with the most economically feasible FEM technique was established. An understanding of the main drivers for variability for AM was portrayed, with the focus on achieving material internal isotropy. Subsequently, a technique for deposition parameter optimization was presented, further procedure testing was performed following other polymeric materials and composites. A replicability assessment by means of the use of technology 4.0 was proposed, and subsequent industry findings gathered the ultimate need of developing a process that demonstrate how to re-engineer designs in order to show the best results with AM processing. The latest study aims to apply the Industrial Design and Structure Method (IDES) and applying all the knowledge previously stacked into fully reengineer a product with focus of applying tools from 4.0 era, from product feasibility studies, until CAE – FEM analysis and CAM – DfAM. These results would help in making AM and FDM processes a viable option to be combined with composites technologies to achieve a reliable, cost-effective manufacturing method that could also be used for mass market, industry applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser Powder Bed Fusion (LPBF) permits the manufacturing of parts with optimized geometry, enabling lightweight design of mechanical components in aerospace and automotive and the production of tools with conformal cooling channels. In order to produce parts with high strength-to-weight ratio, high-strength steels are required. To date, the most diffused high-strength steels for LPBF are hot-work tool steels, maraging and precipitation-hardening stainless steels, featuring different composition, feasibility and properties. Moreover, LPBF parts usually require a proper heat treatment and surface finishing, to develop the desired properties and reduce the high roughness resulting from LPBF. The present PhD thesis investigates the effect of different heat treatments and surface finishing on the microstructure and mechanical properties of a hot-work tool steel and a precipitation-hardening stainless steel manufactured via LPBF. The bibliographic section focuses on the main aspects of LPBF, hot-work tool steels and precipitation-hardening stainless steels. The experimental section is divided in two parts. Part A addresses the effect of different heat treatments and surface finishing on the microstructure, hardness, tensile and fatigue behaviour of a LPBF manufactured hot-work tool steel, to evaluate its feasibility for automotive and racing components. Results indicated the possibility to achieve high hardness and strength, comparable to the conventionally produced steel, but a great sensitivity of fatigue strength on defects and surface roughness resulting from LPBF. Part B investigates the effect of different heat treatments on the microstructure, hardness, tensile and notch-impact behaviour of a LPBF produced precipitation-hardening stainless steel, to assess its feasibility for tooling applications. Results indicated the possibility to achieve high hardness and strength also through a simple Direct Aging, enabling heat treatment simplification by exploiting the microstructural features resulting from LPBF.