4 resultados para MANIFOLDS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
We study automorphisms and the mapping class group of irreducible holomorphic symplectic (IHS) manifolds. We produce two examples of manifolds of K3[2] type with a symplectic action of the alternating group A7. Our examples are realized as double EPW-sextics, the large cardinality of the group allows us to prove the irrationality of the associated families of Gushel-Mukai threefolds. We describe the group of automorphisms of double EPW-cubes. We give an answer to the Nielsen realization problem for IHS manifolds in analogy to the case of K3 surfaces, determining when a finite group of mapping classes fixes an Einstein (or Kähler-Einstein) metric. We describe, for some deformation classes, the mapping class group and its representation in second cohomology. We classify non-symplectic involutions of manifolds of OG10 type determining the possible invariant and coinvariant lattices. We study non-symplectic involutions on LSV manifolds that are geometrically induced from non-symplectic involutions on cubic fourfolds.
Resumo:
In this thesis work I analyze higher spin field theories from a first quantized perspective, finding in particular new equations describing complex higher spin fields on Kaehler manifolds. They are studied by means of worldline path integrals and canonical quantization, in the framework of supersymmetric spinning particle theories, in order to investigate their quantum properties both in flat and curved backgrounds. For instance, by quantizing a spinning particle with one complex extended supersymmetry, I describe quantum massless (p,0)-forms and find a worldline representation for their effective action on a Kaehler background, as well as exact duality relations. Interesting results are found also in the definition of the functional integral for the so called O(N) spinning particles, that will allow to study real higher spins on curved spaces. In the second part, I study Weyl invariant field theories by using a particular mathematical framework known as tractor calculus, that enable to maintain at each step manifest Weyl covariance.
Resumo:
We study automorphisms of irreducible holomorphic symplectic (IHS) manifolds deformation equivalent to the O’Grady’s sixfold. We classify non-symplectic and symplectic automorphisms using lattice theoretic criterions related to the lattice structure of the second integral cohomology. Moreover we introduce the concept of induced automorphisms. There are two birational models for O'Grady's sixfolds, the first one introduced by O'Grady, which is the resolution of singularities of the Albanese fiber of a moduli space of sheaves on an abelian surface, the second one which concerns in the quotient of an Hilbert cube by a symplectic involution. We find criterions to know when an automorphism is induced with respect to these two different models, i.e. it comes from an automorphism of the abelian surface or of the Hilbert cube.
Resumo:
The aim of this Doctoral Thesis is the development of new catalytic synthetic methodologies in the context of the modern organic chemistry setting, with special focus on the use of cheap, sustainable catalytic materials. Specifically, during the course my PhD, I focused my research on two main distinct catalytic strategies, namely: the use of carbonaceous materials as catalysts (carbocatalysis) and nickel catalysis, also investigating a synergistic combination of the two. These methodologies were explored as means for the manipulation of (hetero)aromatic cores, representing ubiquitous, easily accessible and privileged scaffolds in medicinal or natural products chemistry. Both polar and radical reaction manifolds were engaged as complementary reactivities, capitalizing on metal- as well as organo-based activation modes. Particular attention has been devoted to addressing modern synthetic challenges or highly sought- after methodologies. Specifically, protocols for direct substitution of alcohols, dearomatization of arene nuclei, formation of C-S bonds, carbon dioxide fixation, C-C bond activation and fluoroalkylation were successfully achieved under carbo- or nickel catalyzed conditions.