4 resultados para MACAQUE
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The posterior parietal cortex (PPC) of primates represents a remarkable platform that has evolved over time to solve some of the computational challenges that we face in the everyday life, such as sensorimotor integration, spatial attention, and motor planning. With the aim of further investigating the multifaceted functional characteristics of medial PPC, we conducted three studies to explore the visuomotor, somatic, visual, and attention-related properties of two PPC areas: V6A, a visuomotor area part of the dorsomedial visual stream, and PE, an area strongly dominated by somatomotor input, residing mainly on the exposed surface of the superior parietal lobule. In the first study, we tested the impact of visual feedback on V6A grasp-related activity during arm movements towards objects of different shapes. Our results demonstrate that V6A is modulated by both grip type and visual information during grasping preparation and execution, with a predominance of cells influenced by grip type. In the second study, we explored the influence of depth and direction information on reach-related activity of neurons in the so far largely neglected medial part of area PE. We observed a remarkable trend in medial PPC, going from the joint coding of depth and direction signals caudally, in area V6A, to a largely segregated processing of the two signals rostrally, in area PE. In the third study, we used a combined fMRI-electrophysiology experiment to investigate the neuronal mechanisms underlying covert shift of attention processes in area V6A. Our preliminary results reveal that half of the cells showed shift-selective activity when the monkey covertly shifted its attention towards the receptive field. All together these findings highlight the role of the medial PPC in integrating information coming from different sources (vision, somatosensory and motor) and emphasize the involvement of action-related regions of the dorsomedial visual stream in higher level cognitive functions.
Resumo:
The superior parietal lobule (SPL) of macaques is classically described as an associative cortex implicated in visuospatial perception, planning and control of reaching and grasping movements (De Vitis et al., 2019; Galletti et al., 2003, 2018, 2022; Fattori et al., 2017; Hadjidimitrakis et al., 2015). These processes are the result of the integration of signals related to different sensory modalities. During a goal-directed action, eye and limb information are combined to ensure that the hand is transported at the gazed target location and the arm is maintained steady in the final position. The SPL areas V6A, PEc and PE contain cells sensitive to the direction of gaze and limb position but less is known about the degree of independent encoding of these signals. In this thesis, we evaluated the influence of eye and arm position information upon single neuron activity of areas V6A, PEc and PE during the holding period after the execution of arm reaching movement, when the gaze and hand are both still at the reach target. Two male macaques (Macaca fascicularis) performed a reaching task while single unit activity was recorded from areas V6A, PEc and PE. We found that neurons in all these areas were modulated by eye and static arm positions with a joint encoding of gaze and somatosensory signals in V6A and PEc and a mostly separate processing of the two signals in PE. The elaboration of this information reflects the functional gradient found in the SPL with the caudal sector characterized by visuo-somatic properties in comparison to the rostral sector dominated by somatosensory signals. This evidence well agree also with the recent reallocation of areas V6A and PEc in Brodmann’s area 7 depending on their similar structural and functional features with respect to PE belonging to Brodmann’s area 5 (Gamberini et al., 2020).
Resumo:
Nonhuman primates (NHPs) are important animal models for the study of human health and disease. In particular, the use of NHPs to study the vaginal microbiome and susceptibility to infections (such as HIV and herpesvirus) is exceptionally valuable due to the similarity in anatomy and physiology. An important aspect to this is maintaining a healthy vaginal microbiome which then minimizes colonization by pathogens and resulting inflammation along the mucosa. In women, conditions such as bacterial vaginosis (BV) are frequently treated with antibiotics such as metronidazole or clindamycin. Due to the excessive use of antimicrobials in medicine and agriculture, alternative compounds and therapies are highly desired to treat infections. Approaches that have been developed and used for vaginal infections includes the use of natural antimicrobials such as essential oils, probiotics, and live cultures, which mimic and function like antibiotics but lack development of resistance like classic antibiotics. However, these approaches have been minimally studied in humans and animals. Effectiveness of essential oils are anecdotal at best. Microbiome manipulation on the other hand has been investigated more thoroughly. Novel products are being distributed for medical use and are monotherapies containing Lactobacillus which colonize the vaginal mucosa (Ali et al., 2020; Brichacek et al., 2013; Lagenaur, Sanders-Beer, et al., 2011). Unfortunately, these therapies have limitations due to durability and individual response in women. By evaluating the extent by which the NHP vaginal mucosa can be colonized with exogenously delivered bacteria, this animal model will highlight the NHP for use in translational studies which use essential oils and beneficial microbiome bacteria for vaginal delivery.
Resumo:
Our scope in this thesis is to propose architectures of CNNs in such a way to model the early visual pathway, including the Lateral Geniculate Nucleus and the Horizontal Connectivity of the primary visual cortex. Moreover, we will show how cortically inspired architectures allow to perform contrast perceptual invariance as well as grouping and the emergence of visual percepts. Particularly, the LGN is modeled with a first layer l0 containing a single filter Ψ0 that pre-filters the image I. Since the RPs of the LGN cells can be modeled as a LoG, we expect to obtain a radially symmetric filter with a similar shape; to this end, we prove the rotational invariance of Ψ0 and we study the influence of this filter to the subsequent layer. Indeed, we compare the statistic distribution of the filters in the second layer l1 of our architecture with the statistic distribution of the RPs of V1 cells of a macaque. Then, we model the horizontal connectivity of V1 implementing a transition kernel K1 to the layer l1. In this setting, we study the vector fields and the association fields induced by the connectivity kernel K1. To this end, we first approximate the filters bank in l1 with a Gabor function and use the parameters just found to re-parameterize the kernel. Thanks to this step, the kernel is now re-parameterized into a sub-Riemmanian space R2 × S1. Now we are able to compare the vector and association fields induced by K1 with the models of the horizontal connectivity.