3 resultados para Lumbar intervertebral discs

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With population ageing, spine diseases have an increasing prevalence and induce high economic and social costs. The development of minimally invasive surgeries allows reducing the surgery-associated risks in elderly and polymorbid patients, and save costs by treating more patients in shorter time and reducing the complications. Percutaneous Cement Discoplasty (PCD) is a minimally invasive technique developed to treat highly degenerated intervertebral discs exhibiting a vacuum phenomenon. Filling the disc with bone cement creates a stand-alone spacer which partially restores the disc height and re-opens the foraminal space. PCD has recently been introduced to clinical use. However, the spine biomechanics following this treatment remained unravelled. The aim of this PhD thesis is to bridge the clinical experience with in vitro methodologies, to provide a multilateral evaluation of PCD outcome and a better understanding of its impact on the spine biomechanics, and of its possible contraindications. Firstly, a suitable in vitro porcine model to test the biomechanics of discoplasty by comparing specimens in the preoperative and postoperative conditions was developed. The methodology was then applied to investigate the biomechanics of discoplasty in cadaveric human segments. The in vitro specimens were mechanically investigated in flexion and extension, while a DIC system quantified the range of motion, disc height, and strains on the disc surface. Then, a versatile tool to measure the impact of discoplasty on the foramen space was developed and applied both to clinical and experimental work. The vertebrae reconstructed from CT scans were registered to match the loading configuration, using ex vivo DIC measurements under loading. The foramen volumetric changes caused by PCD was measured using a 3D geometrical method clinically developed by the research group. In conclusion, this project significantly extended the understanding of PCD biomechanics, highlighting its benefits in the treatment of advanced cases of intervertebral disc degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, we study the accretion of mass and angular momentum onto the disc of spiral galaxies from a global and a local perspective and comparing theory predictions with several observational data. First, we propose a method to measure the specific mass and radial growth rates of stellar discs, based on their star formation rate density profiles and we apply it to a sample of nearby spiral galaxies. We find a positive radial growth rate for almost all galaxies in our sample. Our galaxies grow in size, on average, at one third of the rate at which they grow in mass. Our results are in agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time. We also propose a novel method to reconstruct accretion profiles and the local angular momentum of the accreting material from the observed structural and chemical properties of spiral galaxies. Applied to the Milky Way and to one external galaxy, our analysis indicates that accretion occurs at relatively large radii and has a local deficit of angular momentum with respect to the disc. Finally, we show how structure and kinematics of hot gaseous coronae, which are believed to be the source of mass and angular momentum of massive spiral galaxies, can be reconstructed from their angular momentum and entropy distributions. We find that isothermal models with cosmologically motivated angular momentum distributions are compatible with several independent observational constraints. We also consider more complex baroclinic equilibria: we describe a new parametrization for these states, a new self-similar family of solution and a method for reconstructing structure and kinematics from the joint angular momentum/entropy distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In silico methods, such as musculoskeletal modelling, may aid the selection of the optimal surgical treatment for highly complex pathologies such as scoliosis. Many musculoskeletal models use a generic, simplified representation of the intervertebral joints, which are fundamental to the flexibility of the spine. Therefore, to model and simulate the spine, a suitable representation of the intervertebral joint is crucial. The aim of this PhD was to characterise specimen-specific models of the intervertebral joint for multi-body models from experimental datasets. First, the project investigated the characterisation of a specimen-specific lumped parameter model of the intervertebral joint from an experimental dataset of a four-vertebra lumbar spine segment. Specimen-specific stiffnesses were determined with an optimisation method. The sensitivity of the parameters to the joint pose was investigate. Results showed the stiffnesses and predicted motions were highly depended on both the joint pose. Following the first study, the method was reapplied to another dataset that included six complete lumbar spine segments under three different loading conditions. Specimen-specific uniform stiffnesses across joint levels and level-dependent stiffnesses were calculated by optimisation. Specimen-specific stiffness show high inter-specimen variability and were also specific to the loading condition. Level-dependent stiffnesses are necessary for accurate kinematic predictions and should be determined independently of one another. Secondly, a framework to create subject-specific musculoskeletal models of individuals with severe scoliosis was developed. This resulted in a robust codified pipeline for creating subject-specific, severely scoliotic spine models from CT data. In conclusion, this thesis showed that specimen-specific intervertebral joint stiffnesses were highly sensitive to joint pose definition and the importance of level-dependent optimisation. Further, an open-source codified pipeline to create patient-specific scoliotic spine models from CT data was released. These studies and this pipeline can facilitate the specimen-specific characterisation of the scoliotic intervertebral joint and its incorporation into scoliotic musculoskeletal spine models.