5 resultados para Low-abundance Proteins

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urine is considered an ideal source of biomarkers, however in veterinary medicine a complete study on the urine proteome is still lacking. The present work aimed to apply proteomic techniques to the separation of the urine proteome in dogs, cats, horses, cows and some non-conventional species. High resolution electrophoresis (HRE) was also validated for the quantification of albuminuria in dogs and cats. In healthy cats, applying SDS-PAGE and 2DE coupled to mass spectrometry (MS), was produced a reference map of the urine proteome. Moreover, 13 differentially represented urine proteins were linked with CKD, suggesting uromodulin, cauxin, CFAD, Apo-H, RBP and CYSM as candidate biomarkers to be investigated further. In dogs, applying SDS-PAGE coupled to MS, was highlighted a specific pattern in healthy animals showing important differences in patients affected by leishmaniasis. In particular, uromodulin could be a putative biomarker of tubular damage while arginine esterase and low MW proteins needs to be investigated further. In cows, applying SDS-PAGE, were highlighted different patterns between heifers and cows showing some interesting changes during pregnancy. In particular, putative alpha-fetoprotein and b-PAP needs to be further investigated. In horses, applying SDS-PAGE, was produced a reference profile characterized by 13±4 protein bands and the most represented one was the putative uromodulin. Proteinuric horses showed the decrease of the putative uromodulin band and the appearance of 2 to 4 protein bands at higher MW and a greater variability in the range of MW between 49 and 17 kDa. In felids and giraffes was quantified proteinuria reporting the first data for UTP and UPC. Moreover, by means of SDS-PAGE, were highlighted species-specific electrophoretic patterns in big felids and giraffes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical pyrolysis was used to investigate the formation of diketopiperazines (DKPs) which are cyclic dipeptides formed from the thermal degradation of proteins. A quali/quantitative procedure was developed combining microscale flash pyrolysis at 500 °C with gas chromatography-mass spectrometry (GC-MS) of DKPs trapped onto an adsorbent phase. Polar DKPs were silylated prior to GC-MS. Particular attention was paid to the identification of proline (Pro) containing DKPs due to their greater facility of formation. The GC-MS characteristics of more than 80 original and silylated DKPs were collected from the pyrolysis of sixteen linear dipeptides and four model proteins (e.g. bovine serum albumin, BSA). The structure of a novel DKP, cyclo(pyroglutamic-Pro) was established by NMR and ESI-MS analysis, while the structures of other novel DKPs remained tentative. DKPs resulted rather specific markers of amino acid sequence in proteins, even though the thermal degradation of DKPs should be taken into account. Structural information of DKPs gathered from the pyrolysis of model compounds was employed to the identification of these compounds in the pyrolysate of proteinaceous samples, including intrinsecally unfolded protein (IUP). Analysis of the liquid fraction (bio-oil) obtained from the pyrolysis of microalgae Nannochloropsis gaditana, Scenedesmus spp with a bench scale reactor showed that DKPs constituted an important pool of nitrogen-containing compounds. Conversely, the level of DKPs was rather low in the bio-oil of Botryococcus braunii. The developed micropyrolysis procedure was applied in combination with thermogravimetry (TGA) and infrared spectroscopy (FT-IR) to investigate surface interaction between BSA and synthetic chrysotile. The results showed that the thermal behavior of BSA (e.g. DKPs formation) was affected by the different form of doped synthetic chrysotile. The typical DKPs evolved from collagen were quantified in the pyrolysates of archaeological bones from Vicenne Necropolis in order to evaluate their conservation status in combination with TGA, FTIR and XRD analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our view of Globular Clusters has deeply changed in the last decade. Modern spectroscopic and photometric data have conclusively established that globulars are neither coeval nor monometallic, reopening the issue of the formation of such systems. Their formation is now schematized as a two-step process, during which the polluted matter from the more massive stars of a first generation gives birth, in the cluster innermost regions, to a second generation of stars with the characteristic signature of fully CNO-processed matter. To date, star-to-star variations in abundances of the light elements (C, N, O, Na) have been observed in stars of all evolutionary phases in all properly studied Galactic globular clusters. Multiple or broad evolutionary sequences have also been observed in nearly all the clusters that have been observed with good signal-to-noise in the appropriate photometric bands. The body of evidence suggests that spreads in light-element abundances can be fairly well traced by photometric indices including near ultraviolet passbands, as CNO abundance variations affect mainly wavelengths shorter than ~400 nm owing to the rise of some NH and CN molecular absorption bands. Here, we exploit this property of near ultraviolet photometry to trace internal chemical variations and combined it with low resolution spectroscopy aimed to derive carbon and nitrogen abundances in order to maximize the information on the multiple populations. This approach has been proven to be very effective in (i) detecting multiple population, (ii) characterizing their global properties (i.e., relative fraction of stars, location in the color-magnitude diagram, spatial distribution, and trends with cluster parameters) and (iii) precisely tagging their chemical properties (i.e., extension of the C-N anticorrelation, bimodalities in the N content).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cereals, and in particular wheat, have always been recognized as a fundamental food worldwide. In particular, the success of wheat is linked with unique properties of the gluten protein fraction used in bread making process to obtain products that are widely used in traditional and modern diets. The rapid increase in the world population let to a parallel increases in food production, particularly of wheat. Increasing yield potential and selection of cultivars much more resistant to plant disease and to environmental factors could have negatively affected the quality of the grain. Moreover, the “green revolution” was characterized by a widespread use of agricultural chemicals and by industrialization of food production that led to a huge rise in the consumption of refined products. Modern baking practices have shortened bread leavening, increased the use of chemical/yeast leavening agents and there is well-documented scientific evidence of the negative effects of ultra-processed food in human healthy. All this changes profoundly modified the human diet and, as a result, may have affected Gluten-related disease (GRDs) that has arisen in the whole word populations. Gluten-related diseases (GRDs) are multifactorial pathologies in which environmental factors and genetic background contribute to a low-grade chronic inflammation of the gastrointestinal tract. Here, I investigated the potential pro-inflammatory effect of different wheat varieties and whether bread making processing are involved in the onset or worsening of gut inflammation. In vitro, ex vivo and in vivo studies conducted throughout my Phd period have shown a pro-inflammatory effect of wheat especially marked in modern varieties and a higher inflammatory response linked to the use of common raising agent as Saccharomyces Cerevisiae and to the addiction of chemical bakery improver substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing demand for alternatives to meat food products, which is linked to ethical and environmental reasons, highlights the necessity of using different protein sources. Plant proteins provide a valid option, thanks to the relative low costs, high availability and wide supply sources. The current process used to produce plant concentrates and isolates is the alkaline extraction followed by isoelectric precipitation. However, despite the high purity of the proteins, it presents some drawbacks. Innovative protein extraction processes are emerging, with the aim of reducing the environmental impact and the costs, as well as improving the functional properties. In this study, the traditional wet protein extraction and another simplified wet process were used to obtain protein-rich extracts out of different plants. The sources considered in the project were de-oiled sunflower and canola, chickpea, lentils, and the camelina meal, an emerging oleaginous seed interesting for its high content of omega 3. The extracts obtained from the two processes were then analysed for their capacities to hold water and fat, to form gel and a stable foam. Results highlighted strong differences concerning the protein content, yield and functionalities. The extracts obtained with the alkaline process confirmed the literature data about the four plant sources (sunflower, canola, chickpea and lentils) and allow to obtain a camelina concentrate with a protein content of 63 % and a protein recovery of 41 %. The second easiest process was not effective to obtain a protein enrichment in oleaginous sources, whereas an enrichment of 10 and 15 % was obtained in chickpea and lentils, respectively. The functional properties were also completely different: the easiest process produced protein ingredients completely water-soluble at pH 7, with a discrete foaming capacity compared to the extracts obtained with alkaline process. These characteristics could make these extracts suitable for the plant milk-analogue products.