3 resultados para Low carbon operations

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change has been acknowledged as a threat to humanity. Most scholars agree that to avert dangerous climate change and to transform economies into low-carbon societies, deep global emission reductions are required by the year 2050. Under the framework of the Kyoto Protocol, the Clean Development Mechanism (CDM) is the only market-based instrument that encourages industrialised countries to pursue emission reductions in developing countries. The CDM aims to pay the incremental finance necessary to operationalize emission reduction projects which are otherwise not financially viable. According to the objectives of the Kyoto Protocol, the CDM should finance projects that are additional to those which would have happened anyway, contribute to sustainable development in the countries hosting the projects, and be cost-effective. To enable the identification of such projects, an institutional framework has been established by the Kyoto Protocol which lays out responsibilities for public and private actors. This thesis examines whether the CDM has achieved these objectives in practice and can thus be considered an effective tool to reduce emissions. To complete this investigation, the book applies economic theory and analyses the CDM from two perspectives. The first perspective is the supply-dimension which answers the question of how, in practice, the CDM system identified additional, cost-effective, sustainable projects and, generated emission reductions. The main contribution of this book is the second perspective, the compliance-dimension, which answers the question of whether industrialised countries effectively used the CDM for compliance with their Kyoto targets. The application of the CDM in the European Union Emissions Trading Scheme (EU ETS) is used as a case-study. Where the analysis identifies inefficiencies within the supply or the compliance dimension, potential improvements of the legal framework are proposed and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MFA and LCA methodologies were applied to analyse the anthropogenic aluminium cycle in Italy with focus on historical evolution of stocks and flows of the metal, embodied GHG emissions, and potentials from recycling to provide key features to Italy for prioritizing industrial policy toward low-carbon technologies and materials. Historical trend series were collected from 1947 to 2009 and balanced with data from production, manufacturing and waste management of aluminium-containing products, using a ‘top-down’ approach to quantify the contemporary in-use stock of the metal, and helping to identify ‘applications where aluminium is not yet being recycled to its full potential and to identify present and future recycling flows’. The MFA results were used as a basis for the LCA aimed at evaluating the carbon footprint evolution, from primary and electrical energy, the smelting process and the transportation, embodied in the Italian aluminium. A discussion about how the main factors, according to the Kaya Identity equation, they did influence the Italian GHG emissions pattern over time, and which are the levers to mitigate it, it has been also reported. The contemporary anthropogenic reservoirs of aluminium was estimated at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), and it would imply a potential of about 160 Mt of CO2eq emissions savings. A discussion of criticality related to aluminium waste recovery from the transportation and the containers and packaging sectors was also included in the study, providing an example for how MFA and LCA may support decision-making at sectorial or regional level. The research constitutes the first attempt of an integrated approach between MFA and LCA applied to the aluminium cycle in Italy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research reported in this manuscript concerns the structural characterization of graphene membranes and single-walled carbon nanotubes (SWCNTs). The experimental investigation was performed using a wide range of transmission electron microscopy (TEM) techniques, from conventional imaging and diffraction, to advanced interferometric methods, like electron holography and Geometric Phase Analysis (GPA), using a low-voltage optical set-up, to reduce radiation damage in the samples. Electron holography was used to successfully measure the mean electrostatic potential of an isolated SWCNT and that of a mono-atomically thin graphene crystal. The high accuracy achieved in the phase determination, made it possible to measure, for the first time, the valence-charge redistribution induced by the lattice curvature in an individual SWCNT. A novel methodology for the 3D reconstruction of the waviness of a 2D crystal membrane has been developed. Unlike other available TEM reconstruction techniques, like tomography, this new one requires processing of just a single HREM micrograph. The modulations of the inter-planar distances in the HREM image are measured using Geometric Phase Analysis, and used to recover the waviness of the crystal. The method was applied to the case of a folded FGC, and a height variation of 0.8 nm of the surface was successfully determined with nanometric lateral resolution. The adhesion of SWCNTs to the surface of graphene was studied, mixing shortened SWCNTs of different chiralities and FGC membranes. The spontaneous atomic match of the two lattices was directly imaged using HREM, and we found that graphene membranes act as tangential nano-sieves, preferentially grafting achiral tubes to their surface.