4 resultados para Loop-mediated isothermal amplification

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La prima parte del nostro studio riguarda la tecnica LAMP (Loop-mediated isothermal amplification), una tecnica di amplificazione isotermica recentemente inventata (Notomi et al., 2000). Essa presenta notevoli vantaggi rispetto alle tradizionali PCR: non necessita di strumentazioni sofisticate come i termociclatori, può essere eseguita da personale non specializzato, è una tecnica altamente sensibile e specifica ed è molto tollerante agli inibitori. Tutte queste caratteristiche fanno sì che essa possa essere utilizzata al di fuori dei laboratori diagnostici, come POCT (Point of care testing), con il vantaggio di non dover gestire la spedizione del campione e di avere in tempi molto brevi risultati paragonabili a quelli ottenuti con la tradizionale PCR. Sono state prese in considerazione malattie infettive sostenute da batteri che richiedono tempi molto lunghi per la coltivazione o che non sono addirittura coltivabili. Sono stati disegnati dei saggi per la diagnosi di patologie virali che necessitano di diagnosi tempestiva. Altri test messi a punto riguardano malattie genetiche del cane e due batteri d’interesse agro-alimentare. Tutte le prove sono state condotte con tecnica real-time per diminuire il rischio di cross-contaminazione pur riuscendo a comprendere in maniera approfondita l’andamento delle reazioni. Infine è stato messo a punto un metodo di visualizzazione colorimetrico utilizzabile con tutti i saggi messi a punto, che svincola completamente la reazione LAMP dall’esecuzione in un laboratorio specializzato. Il secondo capitolo riguarda lo studio dal punto di vista molecolare di un soggetto che presenza totale assenza di attività mieloperossidasica all’analisi di citochimica automatica (ADVIA® 2120 Hematology System). Lo studio è stato condotto attraverso amplificazione e confronto dei prodotti di PCR ottenuti sul soggetto patologico e su due soggetti con fenotipo wild-type. Si è poi provveduto al sequenziamento dei prodotti di PCR su sequenziatore automatico al fine di ricercare la mutazione responsabile della carenza di MPO nel soggetto indicato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marek's disease (MD) is a contagious, lymphoproliferative and neuropathic disease of poultry caused by a ubiquitous lymphotropic and oncogenic virus, Gallid alphaherpesvirus 2 (GaHV-2). MD has been reported in all poultry-rearing countries and is among the viral diseases with the highest economic impact in the poultry industry worldwide, including Italy. MD has been also recognized as one of the leading causes of mortality in backyard poultry. The present doctoral thesis aimed at exploring Marek's disease virus molecular epidemiology in Italian commercial and backyard chicken flocks and, for the first time, in commercial turkeys affected by clinical MD. Molecular biology techniques targeting the full-length meq gene, the major GaHV-2 oncogene, were used to detect and characterize the circulating GaHV-2 strains searching for genetic markers of virulence. A final study focused on the development of rapid, sensitive, and species-specific loop-mediated isothermal amplification assays coupled with a lateral flow device readout for the detection of conventional and recombinant HVT-based vaccines is included in the thesis. HVT vaccines, currently used to protect chickens from MD, are referred to as "leaky", as they do not impede the infection, replication, and shedding of field GaHV-2: vaccinal and field viruses can coexist in the vaccinated host and molecular tests able to discriminate between GaHV-2 and HVT are required. These new simple, fast, and accurate tests for the monitoring of MD vaccination success in the field could be greatly beneficial for field veterinarians, small laboratories, and more broadly for resource-limited settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Myc oncoproteins belong to a family of transcription factors composed by Myc, N-Myc and L-Myc. The most studied components of this family are Myc and N-Myc because their expressions are frequently deregulated in a wide range of cancers. These oncoproteins can act both as activators or repressors of gene transcription. As activators, they heterodimerize with Max (Myc associated X-factor) and the heterodimer recognizes and binds a specific sequence elements (E-Box) onto gene promoters recruiting histone acetylase and inducing transcriptional activation. Myc-mediated transcriptional repression is a quite debated issue. One of the first mechanisms defined for the Myc-mediated transcriptional repression consisted in the interaction of Myc-Max complex Sp1 and/or Miz1 transcription factors already bound to gene promoters. This interaction may interfere with their activation functions by recruiting co-repressors such as Dnmt3 or HDACs. Moreover, in the absence of , Myc may interfere with the Sp1 activation function by direct interaction and subsequent recruitment of HDACs. More recently the Myc/Max complex was also shown to mediate transcriptional repression by direct binding to peculiar E-box. In this study we analyzed the role of Myc overexpression in Osteosarcoma and Neuroblastoma oncogenesis and the mechanisms underling to Myc function. Myc overexpression is known to correlate with chemoresistance in Osteosarcoma cells. We extended this study by demonstrating that c-Myc induces transcription of a panel of ABC drug transporter genes. ABCs are a large family trans-membrane transporter deeply involved in multi drug resistance. Furthermore expression levels of Myc, ABCC1, ABCC4 and ABCF1 were proved to be important prognostic tool to predict conventional therapy failure. N-Myc amplification/overexpression is the most important prognostic factor for Neuroblastoma. Cyclin G2 and Clusterin are two genes often down regulated in neuroblastoma cells. Cyclin G2 is an atypical member of Cyclin family and its expression is associated with terminal differentiation and apoptosis. Moreover it blocks cell cycle progression and induces cell growth arrest. Instead, CLU is a multifunctional protein involved in many physiological and pathological processes. Several lines of evidences support the view that CLU may act as a tumour suppressor in Neuroblastoma. In this thesis I showed that N-Myc represses CCNG2 and CLU transcription by different mechanisms. • N-Myc represses CCNG2 transcription by directly interacting with Sp1 bound in CCNG2 promoter and recruiting HDAC2. Importantly, reactivation of CCNG2 expression through epigenetic drugs partially reduces N-Myc and HDAC2 mediated cell proliferation. • N-Myc/Max complex represses CLU expression by direct binding to a peculiar E-box element on CLU promoter and by recruitment of HDACs and Polycomb Complexes, to the CLU promoter. Overall our findings strongly support the model in which Myc overexpression/amplification may contribute to some aspects of oncogenesis by a dual action: i) transcription activation of genes that confer a multidrug resistant phenotype to cancer cells; ii), transcription repression of genes involved in cell cycle inhibition and cellular differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleic acid biosensors represent a powerful tool for clinical and environmental pathogens detection. For applications such as point-of-care biosensing, it is fundamental to develop sensors that should be automatic, inexpensive, portable and require a professional skill of the user that should be as low as possible. With the goal of determining the presence of pathogens when present in very small amount, such as for the screening of pathogens in drinking water, an amplification step must be implemented. Often this type of determinations should be performed with simple, automatic and inexpensive hardware: the use of a chemical (or nanotechnological) isothermal solution would be desirable. My Ph.D. project focused on the study and on the testing of four isothermal reactions which can be used to amplify the nucleic acid analyte before the binding event on the surface sensor or to amplify the signal after that the hybridization event with the probe. Recombinase polymerase amplification (RPA) and ligation-mediated rolling circle amplification (L-RCA) were investigated as methods for DNA and RNA amplification. Hybridization chain reaction (HCR) and Terminal deoxynucleotidil transferase-mediated amplification were investigated as strategies to achieve the enhancement of the signal after the surface hybridization event between target and probe. In conclusion, it can be said that only a small subset of the biochemical strategies that are proved to work in solution towards the amplification of nucleic acids does truly work in the context of amplifying the signal of a detection system for pathogens. Amongst those tested during my Ph.D. activity, recombinase polymerase amplification seems the best candidate for a useful implementation in diagnostic or environmental applications.