2 resultados para Long-term data
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. The potential use of hair glucocorticoids as a non-invasive, retrospective, biomarker of long term HPA activity is of great interest, and it is gaining acceptance in humans and animals. However, there are still no studies in literature examining hair cortisol concentration in pigs and corticosterone concentration in laboratory rodents. Therefore, we developed and validated, for the first time, a method for measuring hair glucocorticoids concentration in commercial sows and in Sprague-Dawley rats. Our preliminary data demonstrated: 1) a validated and specific washing protocol and extraction assay method with a good sensitivity in both species; 2) the effect of the reproductive phase, housing conditions and seasonality on hair cortisol concentration in sows; 3) similar hair corticosterone concentration in male and female rats; 4) elevated hair corticosterone concentration in response to chronic stress manipulations and chronic ACTH administration, demonstrating that hair provides a good direct index of HPA activity over long periods than other indirect parameters, such adrenal or thymus weight. From these results we believe that this new non-invasive tool needs to be applied to better characterize the overall impact in livestock animals and in laboratory rodents of chronic stressful situations that negatively affect animals welfare. Nevertheless, further studies are needed to improve this methodology and maybe to develop animal models for chronic stress of high interest and translational value in human medicine.